Molecular imaging with new PET tracers

被引:5
作者
Beer A.J. [1 ,2 ]
Schwaiger M. [1 ]
机构
[1] Klinik und Poliklinik für Nuklearmedizin, Klinikum Rechts der Isar der Technischen Universität München
[2] Klinik und Poliklinik für Nuklearmedizin, Klinikum Rechts der Isar der Technischen Universität, 81675 München
来源
Der Radiologe | 2007年 / 47卷 / 1期
关键词
Angiogenesis; Apoptosis; Hypoxia; Molecular imaging; Positron emission tomography (PET); Proliferation;
D O I
10.1007/s00117-006-1448-6
中图分类号
学科分类号
摘要
In the recent years, positron emission tomography (PET) has gained more and more importance, especially in oncology for primary staging, as well as for response evaluation. The glucose analogon 18F-FDG is the most widely used tracer up to now. In this paper, we review the applications of newly developed, more specific PET tracers. These tracers allow for imaging of a variety of biological processes, such as hypoxia and proliferation. The expression of different receptors can be visualized, like the somatostatin receptor 2 and the integrin αvβ3. Moreover, gene expression can be imaged as well. While most of these approaches are currently in the first phases of clinical evaluation, imaging of hypoxia and proliferation might be integrated into the daily routine in the near future. © 2006 Springer Medizin Verlag.
引用
收藏
页码:8 / 17
页数:9
相关论文
共 30 条
[21]  
Piert M., Machulla H.J., Picchio M., Et al., Hypoxia-specific tumor imaging with 18F-fluoroazomycin arabinoside, J Nucl Med, 46, pp. 106-113, (2005)
[22]  
Schottelius M., Poethko T., Herz M., Et al., First (18)F-labeled tracer suitable for routine clinical imaging of sst receptor-expressing tumors using positron emission tomography, Clin Cancer Res, 10, pp. 3593-3606, (2004)
[23]  
Shields A.F., Mankoff D.A., Link J.M., Et al., Carbon-11-thymidine and FDG to measure therapy response, J Nucl Med, 39, pp. 1757-1762, (1998)
[24]  
Sorger D., Patt M., Kumar P., Et al., 18F]Flu oroazomycinarabinofuranoside (18FAZA) and [18F]Fluoromisonidazole (18FMISO): A comparative study of their selective uptake in hypoxic cells and PET imaging in experimental rat tumors, Nucl Med Biol, 30, pp. 317-326, (2003)
[25]  
Spilker M.E., Sprenger T., Valet M., Et al., Quantification of [18F]diprenorphine kinetics in the human brain with compartmental and non-compartmental modeling approaches, Neuroimage, 22, pp. 1523-1533, (2004)
[26]  
Weber W.A., Ott K., Becker K., Et al., Prediction of response to preoperative chemotherapy in adenocarcinomas of the esophagogastric junction by metabolic imaging, J Clin Oncol, 19, pp. 3058-3065, (2001)
[27]  
Weber W.A., Positron emission tomography as an imaging biomarker, J Clin Oncol, 24, pp. 3282-3292, (2006)
[28]  
Wester H.J., Herz M., Weber W., Et al., Synthesis and radiopharmacology of O-(2-[18F]fluoroethyl)-L-tyrosine for tumor imaging, J Nucl Med, 40, pp. 205-212, (1999)
[29]  
Wieder H., Ott K., Zimmermann F., Et al., PET imaging with [11C]methyl-L-methionine for therapy monitoring in patients with rectal cancer, Eur J Nucl Med Mol Imaging, 29, pp. 789-796, (2002)
[30]  
Wieder H.A., Brucher B.L., Zimmermann F., Et al., Time course of tumor metabolic activity during chemoradiotherapy of esophageal squamous cell carcinoma and response to treatment, J Clin Oncol, 22, pp. 900-908, (2004)