Molecular imaging with new PET tracers

被引:5
作者
Beer A.J. [1 ,2 ]
Schwaiger M. [1 ]
机构
[1] Klinik und Poliklinik für Nuklearmedizin, Klinikum Rechts der Isar der Technischen Universität München
[2] Klinik und Poliklinik für Nuklearmedizin, Klinikum Rechts der Isar der Technischen Universität, 81675 München
来源
Der Radiologe | 2007年 / 47卷 / 1期
关键词
Angiogenesis; Apoptosis; Hypoxia; Molecular imaging; Positron emission tomography (PET); Proliferation;
D O I
10.1007/s00117-006-1448-6
中图分类号
学科分类号
摘要
In the recent years, positron emission tomography (PET) has gained more and more importance, especially in oncology for primary staging, as well as for response evaluation. The glucose analogon 18F-FDG is the most widely used tracer up to now. In this paper, we review the applications of newly developed, more specific PET tracers. These tracers allow for imaging of a variety of biological processes, such as hypoxia and proliferation. The expression of different receptors can be visualized, like the somatostatin receptor 2 and the integrin αvβ3. Moreover, gene expression can be imaged as well. While most of these approaches are currently in the first phases of clinical evaluation, imaging of hypoxia and proliferation might be integrated into the daily routine in the near future. © 2006 Springer Medizin Verlag.
引用
收藏
页码:8 / 17
页数:9
相关论文
共 30 条
[1]  
Barthel H., Cleij M.C., Collingridge D.R., Et al., 3_-deoxy-3_-[18F] fluorothymidine as a new marker for monitoring tumor response to antiproliferative therapy in vivo with positron emission tomography, Cancer Res, 63, pp. 3791-3798, (2003)
[2]  
Beer A.J., Haubner R., Goebel M., Et al., Biodistribution and pharmacokinetics of the αvβ3 selective tracer 18F Galacto-RGD in cancer patients, J Nucl Med, 46, pp. 1333-1341, (2005)
[3]  
Beer A.J., Haubner R., Wolf I., Et al., PET-based human dosimetry of 18F-galacto-RGD, a new radiotracer for imaging alpha v beta3 expression, J Nucl Med, 47, pp. 763-769, (2006)
[4]  
Beer A.J., Wieder H.A., Lordick F., Et al., Adenocarcinomas of esophagogastric junction: Multidetector row CT to evaluate early response to neoadjuvant chemotherapy, Radiology, 239, pp. 472-480, (2006)
[5]  
Beer A.J., Haubner R., Sarbia M., Et al., Positron emission tomography using [18F]galacto-RGD identifies the level of integrin αvβ3 expression in man, Clin Cancer Res, 12, pp. 3942-3949, (2006)
[6]  
Berger F., Gambhir S.S., Recent advances in imaging endogenous or transferred gene expression utilizing radionuclide technologies in living subjects: Applications to breast cancer, Breast Cancer Res, 3, pp. 28-35, (2000)
[7]  
Buck A.K., Halter G., Schirrmeister H., Et al., Imaging proliferation in lung tumors with PET: 18F-FLT versus 18F-FDG, J Nucl Med, 44, pp. 1426-1431, (2003)
[8]  
Chao K.S., Bosch W.R., Mutic S., Et al., A novel approach to overcome hypoxic tumor resistance: Cu-ATSM-guided intensity-modulated radiation therapy, Int J Radiat Oncol Biol Phys, 49, pp. 1171-1182, (2001)
[9]  
Dehdashti F., Mintun M.A., Lewis J.S., Et al., In vivo assessment of tumor hypoxia in lung cancer with 60Cu-ATSM, Eur J Nucl Med Mol Imaging, 30, pp. 844-850, (2003)
[10]  
Grosu A.L., Weber W.A., Riedel E., Et al., L-(methyl-11C) methionine positron emission tomography for target delineation in resected high-grade gliomas before radiotherapy, Int J Radiat Oncol Biol Phys, 63, pp. 64-74, (2005)