A mutual attention based multimodal fusion for fake news detection on social network

被引:0
|
作者
Ying Guo
机构
[1] North China University of Technology,Department of Computer Science
来源
Applied Intelligence | 2023年 / 53卷
关键词
Social network; Fake news detection; Multimodal learning; Deeply neural network;
D O I
暂无
中图分类号
学科分类号
摘要
As the advance of social networks, the emergency of fake news has been the major threat for information security, privacy, and trustworthiness. The fake news can leverage multimedia contents to fabricate evidences or mislead readers, which damages a lot in machine learning and network systems. In this work, we explored the task of multimodal fake news detection. The major challenge of fake news detection stems from the modality fusion by abundant information. Overcoming the limitations of the current models, we tackle the challenge of learning corrections between modalities in news, and substantially proposed a mutual attention neural network (MANN) that can learn the relationship between each different modality. Our model consists of four components: multimodal feature extractor, mutual attention fusion, fake news detector and irrelevant event discriminator. The performance of our proposed architecture is evaluated on Weibo dataset, which indicates the MANN model outperforms the state-of-the-arts.
引用
收藏
页码:15311 / 15320
页数:9
相关论文
共 50 条
  • [21] Multimodal Approaches based on Fake News Detection
    Reddy, Bandi Sravani
    Siva Kumar, A.P.
    Proceedings of the 3rd International Conference on Artificial Intelligence and Smart Energy, ICAIS 2023, 2023, : 751 - 755
  • [22] Multimodal fake news detection via progressive fusion networks
    Jing, Jing
    Wu, Hongchen
    Sun, Jie
    Fang, Xiaochang
    Zhang, Huaxiang
    INFORMATION PROCESSING & MANAGEMENT, 2023, 60 (01)
  • [23] Multimodal Fake News Detection
    Segura-Bedmar, Isabel
    Alonso-Bartolome, Santiago
    INFORMATION, 2022, 13 (06)
  • [24] Multimodal matching-aware co-attention networks with mutual knowledge distillation for fake news detection
    Hu, Linmei
    Zhao, Ziwang
    Qi, Weijian
    Song, Xuemeng
    Nie, Liqiang
    INFORMATION SCIENCES, 2024, 664
  • [25] Hierarchical Semantic Enhancement Network for Multimodal Fake News Detection
    Zhang, Qiang
    Liu, Jiawei
    Zhang, Fanrui
    Xie, Jingyi
    Zha, Zheng-Jun
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 3424 - 3433
  • [26] Multi-Modal fake news Detection on Social Media with Dual Attention Fusion Networks
    Yang, Haitian
    Zhao, Xuan
    Sun, Degang
    Wang, Yan
    Zhu, He
    Ma, Chao
    Huang, Weiqing
    26TH IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS (IEEE ISCC 2021), 2021,
  • [27] A two-branch multimodal fake news detection model based on multimodal bilinear pooling and attention mechanism
    Guo, Ying
    Ge, Hong
    Li, Jinhong
    FRONTIERS IN COMPUTER SCIENCE, 2023, 5
  • [28] MFIR: Multimodal fusion and inconsistency reasoning for explainable fake news detection
    Wu, Lianwei
    Long, Yuzhou
    Gao, Chao
    Wang, Zhen
    Zhang, Yanning
    INFORMATION FUSION, 2023, 100
  • [29] FAKE NEWS DETECTION BASED ON MULTI-FEATURE FUSION UNDER ATTENTION GUIDANCE
    Peng, Yan
    Wu, Huimin
    Wang, Lei
    Wang, Jie
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2022, 23 (09) : 1931 - 1941
  • [30] Intelligent based Framework for Detection of Fake News in the Social Network Platforms
    Fasola, Olusanjo
    Ojeniyi, Joseph
    Oyeniyi, Samuel
    PROCEEDINGS OF THE 15TH INTERNATIONAL CONFERENCE ON CYBER WARFARE AND SECURITY (ICCWS 2020), 2020, : 144 - 154