Existence results for Riemann-Liouville fractional neutral evolution equations

被引:0
|
作者
Yi-Liang Liu
Jing-Yun Lv
机构
[1] Guangxi University for Nationalities,College of Sciences
来源
Advances in Difference Equations | / 2014卷
关键词
fractional neutral evolution equations; Riemann-Liouville fractional derivative; mild solutions; analytic semigroup; measure of noncompactness;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, by using the fractional power of operators and the theory of measure of noncompactness, we discuss a class of fractional neutral evolution equations with Riemann-Liouville fractional derivative. We establish sufficient conditions for the existence of mild solutions for fractional neutral evolution equations in the cases C0 semigroup is compact or noncompact. We give an example to illustrate the applications of the abstract results.
引用
收藏
相关论文
共 50 条
  • [41] Maximum principle for the fractional diffusion equations with the Riemann-Liouville fractional derivative and its applications
    Mohammed Al-Refai
    Yuri Luchko
    Fractional Calculus and Applied Analysis, 2014, 17 : 483 - 498
  • [42] On a periodic problem for Riemann-Liouville fractional semilinear functional evolution inclusions
    Benyoub, Mohammed
    Donchev, Tzanko
    Kitanov, Nikolay
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (10)
  • [43] Nonlocal Hadamard fractional integral conditions for nonlinear Riemann-Liouville fractional differential equations
    Tariboon, Jessada
    Ntouyas, Sotiris K.
    Sudsutad, Weerawat
    BOUNDARY VALUE PROBLEMS, 2014,
  • [44] ON APPROXIMATE CONTROLLABILITY FOR SYSTEMS OF FRACTIONAL EVOLUTION HEMIVARIATIONAL INEQUALITIES WITH RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVES
    Ceng, L. C.
    Cho, S. Y.
    JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2022, 6 (04): : 421 - 438
  • [45] A Multiplicity Results for a Singular Problem Involving a Riemann-Liouville Fractional Derivative
    Ghanmi, A.
    Kratou, M.
    Saoudi, K.
    FILOMAT, 2018, 32 (02) : 653 - 669
  • [46] A NOTE ON RIEMANN-LIOUVILLE FRACTIONAL SOBOLEV SPACES
    Carbotti, Alessandro
    Comi, Giovanni E.
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (01) : 17 - 54
  • [47] APPROXIMATE CONTROLLABILITY AND EXISTENCE OF MILD SOLUTIONS FOR RIEMANN-LIOUVILLE FRACTIONAL STOCHASTIC EVOLUTION EQUATIONS WITH NONLOCAL CONDITIONS OF ORDER 1 < α < 2
    Shu, Linxin
    Shu, Xiao-Bao
    Mao, Jianzhong
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2019, 22 (04) : 1086 - 1112
  • [48] The existence and stability results of multi-order boundary value problems involved Riemann-Liouville fractional operators
    Hammad, Hasanen A.
    Aydi, Hassen
    De la Sen, Manuel
    AIMS MATHEMATICS, 2023, 8 (05): : 11325 - 11349
  • [49] Complex Powers of Fractional Sectorial Operators and Quasilinear Equations with Riemann-Liouville Derivatives
    Fedorov, V. E.
    Avilovich, A. S.
    Zakharova, T. A.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (02) : 580 - 593
  • [50] On a terminal value problem for pseudoparabolic equations involving Riemann-Liouville fractional derivatives
    Tran Bao Ngoc
    Zhou, Yong
    O'Regan, Donal
    Nguyen Huy Tuan
    APPLIED MATHEMATICS LETTERS, 2020, 106