Existence results for Riemann-Liouville fractional neutral evolution equations

被引:0
作者
Yi-Liang Liu
Jing-Yun Lv
机构
[1] Guangxi University for Nationalities,College of Sciences
来源
Advances in Difference Equations | / 2014卷
关键词
fractional neutral evolution equations; Riemann-Liouville fractional derivative; mild solutions; analytic semigroup; measure of noncompactness;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, by using the fractional power of operators and the theory of measure of noncompactness, we discuss a class of fractional neutral evolution equations with Riemann-Liouville fractional derivative. We establish sufficient conditions for the existence of mild solutions for fractional neutral evolution equations in the cases C0 semigroup is compact or noncompact. We give an example to illustrate the applications of the abstract results.
引用
收藏
相关论文
共 38 条
[11]  
Liu ZH(2013)Controllability of nonlinear fractional impulsive evolution systems J. Integral Equ. Appl 25 455-600
[12]  
Li XW(2011)Existence of mild solutions for fractional evolution equations Comput. Math. Appl 62 1275-1283
[13]  
Wang JR(1998)Existence results for a fractional neutral integro-differential equations with state dependent delay Isr. J. Math 108 109-138
[14]  
Zhou Y(1980)Multivalued perturbation of Nonlinear Anal. TMA 4 985-999
[15]  
Fec̆kan M(2005)-accretive differential inclusions J. Math. Anal. Appl 309 638-649
[16]  
Zhou Y(undefined)Boundary value problems for nonlinear ordinary differential equations of second order in Banach space undefined undefined undefined-undefined
[17]  
Jiao F(undefined)Existence theorems of global solutions for nonlinear Volterra type integral equations in Banach spaces undefined undefined undefined-undefined
[18]  
Zhou Y(undefined)undefined undefined undefined undefined-undefined
[19]  
Jiao F(undefined)undefined undefined undefined undefined-undefined
[20]  
Li J(undefined)undefined undefined undefined undefined-undefined