Variational theory for a single polyelectrolyte chain

被引:0
|
作者
R.R. Netz
H. Orland
机构
[1] Service de Physique Théorique,
[2] CEA-Saclay,undefined
[3] 91191 Gif-sur-Yvette,undefined
[4] France,undefined
[5] Max-Planck-Institut für Kolloid- und Grenzflächenforschung,undefined
[6] Kantstr. 55,undefined
[7] 14513 Teltow,undefined
[8] Germany,undefined
关键词
PACS. 36.20.-r Macromolecules and polymer molecules - 61.25.Hq Macromolecular and polymer solutions; polymer melts; swelling - 87.15.-v Molecular biophysics;
D O I
暂无
中图分类号
学科分类号
摘要
Variational methods are applied to a single polyelectrolyte chain. The polymer is modeled as a Gaussian chain with screened electrostatic repulsion between all monomers. As a variational Hamiltonian, the most general Gaussian kernel, including the possibility of a classical or mean polymer path, is employed. The resulting self-consistent equations are systematically solved both for large and small monomer-monomer separations along the chain. In the absence of screening, the polymer is stretched on average. It is described by a straight classical path with Gaussian fluctuations around it. If the electrostatic repulsion is screened, the polymer is isotropically swollen for large separations, and for small separations the polymer correlation function is calculated as an analytic expansion in terms of the monomer-monomer separation along the chain. The electrostatic persistence length and the electrostatic blobsize are inferred from the crossover between distinct scaling ranges. We perform a global analysis of the scaling behavior as a function of the screening length \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} and electrostatic interaction strength \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}is the Bjerrum length and A is the distance of charges along the polymer chain. We find three different scaling regimes. i) A Gaussian-persistent regime with Gaussian behavior at small, persistent behavior at intermediate, and isotropically swollen behavior at large length scales. This regime occurs for weakly charged polymers and only for intermediate values of the screening length. The electrostatic persistence length \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} is defined as the crossover length between the persistent and the asymptotically swollen behavior and is given by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} and thus disagrees with previous (restricted) variational treatments which predict a linear dependence on the screening length \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}.ii) A Gaussian regime with Gaussian behavior at small and isotropically swollen behavior at large length scales. This regime occurs for weakly charged polymers and/or strong screening, and the electrostatic repulsion between monomers only leads to subfluent corrections to Gaussian scaling at small separations. The concept of a persistence length is without meaning in this regime. iii) A persistent regime , where the chain resembles a stretched rod on intermediate and small scales. Here the persistence length is given by the original Odijk prediction, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, if the overstretching of the chain is avoided. We also investigate the effects of a finite polymer length and of an additional excluded-volume interaction, which modify the resultant scaling behavior. Applications to experiments and computer simulations are discussed.
引用
收藏
页码:81 / 98
页数:17
相关论文
共 50 条
  • [1] Variational theory for a single polyelectrolyte chain
    Netz, RR
    Orland, H
    EUROPEAN PHYSICAL JOURNAL B, 1999, 8 (01): : 81 - 98
  • [2] Variational theory for a single polyelectrolyte chain revisited
    Manghi, M
    Netz, RR
    EUROPEAN PHYSICAL JOURNAL E, 2004, 14 (01): : 67 - 77
  • [3] Variational theory for a single polyelectrolyte chain revisited
    M. Manghi
    R. R. Netz
    The European Physical Journal E, 2004, 14 : 67 - 77
  • [4] On the elastic behavior of a single polyelectrolyte chain
    Haronska, P
    Wilder, J
    Vilgis, TA
    JOURNAL DE PHYSIQUE II, 1997, 7 (09): : 1273 - 1285
  • [5] Mean field theory for the intermolecular and intramolecular conformational transitions of a single flexible polyelectrolyte chain
    Shew, Chwen-Yang
    Yoshikawa, Kenichi
    JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (14):
  • [6] Weak violation of universality for polyelectrolyte chains: Variational theory and simulations
    Migliorini, G
    Rostiashvili, VG
    Vilgis, TA
    EUROPEAN PHYSICAL JOURNAL E, 2001, 4 (04): : 475 - 487
  • [7] Weak violation of universality for polyelectrolyte chains: Variational theory and simulations
    G. Migliorini
    V.G. Rostiashvili
    T.A. Vilgis
    The European Physical Journal E, 2001, 4 : 475 - 487
  • [8] COIL TO ROD TRANSITION OF A SINGLE POLYELECTROLYTE CHAIN
    ALESSANDRINI, JL
    MACROMOLECULAR SYMPOSIA, 1994, 81 : 317 - 320
  • [9] Conformational characteristics of single flexible polyelectrolyte chain
    Jesudason, C. G.
    Lyubartsev, A. P.
    Laaksonen, A.
    EUROPEAN PHYSICAL JOURNAL E, 2009, 30 (04): : 341 - 350
  • [10] Kinetics of Swelling and Collapse of a Single Polyelectrolyte Chain
    Mitra, Soumik
    Kundagrami, Arindam
    MACROMOLECULES, 2017, 50 (06) : 2504 - 2517