Planarity, Symmetry and Counting Tilings

被引:0
作者
Koko K. Kayibi
S. Pirzada
机构
[1] Qatar University,Department of Mathematics and Computer Sciences
[2] University of Kashmir,Department of Mathematics
来源
Graphs and Combinatorics | 2012年 / 28卷
关键词
T-tetromino; Tiling; 6-Vertex Ice Model; Medial graph; Eulerian orientation; Tutte polynomial; 05C30;
D O I
暂无
中图分类号
学科分类号
摘要
We axiomatize the geometrical properties of T-tetromino to what we call generalised k-T-tetromino. Using this set of axioms, we show that the number of tilings of a 2kn × 2km rectangular region is given by T(Ln,m ; 3, 3) if and only if the tile is a k-T-tetromino. This generalizes a result of Korn and Pak (Theor Comp Sci 319:3–27, 2004).
引用
收藏
页码:483 / 497
页数:14
相关论文
共 6 条
[1]  
Jacobsen J.L.(2007)Tetromino tilling and the Tutte polynomial J. Phys. A Math. Theor. 40 1439-1446
[2]  
Korn M.(2004)Tilings of rectangles with T-tetrominoes Theor. Comp. Sci. 319 3-27
[3]  
Pak I.(1988)On the evaluation at (3,3) of the Tutte polynomial of a graph J. Comb. Theory Ser. B 44 367-372
[4]  
Las Vergnas M.(2008)On the number of tilings of the rectangular board with T-tetrominoes Aust. J. Comb. 14 107-114
[5]  
Merino C.(1965)Covering a rectangle with T-tetrominoes Amer. Math. Monthly 72 986-988
[6]  
Walkup D.W.(undefined)undefined undefined undefined undefined-undefined