h-p Spectral Element Method for Elliptic Problems on Non-smooth Domains Using Parallel Computers

被引:0
作者
S. K. Tomar
机构
[1] Austrian Academy of Sciences,Johann Radon Inst. for Computational and Applied Mathematics
来源
Computing | 2006年 / 78卷
关键词
Primary 35J25; 65N12; 65N35; 65Y05; Spectral element method; corner singularities; least-squares method; almost optimal preconditioner; exponential accuracy;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a new h-p spectral element method to solve elliptic boundary value problems with mixed Neumann and Dirichlet boundary conditions on non-smooth domains. The method is shown to be exponentially accurate and asymptotically faster than the standard h-p finite element method. The spectral element functions are fully non-conforming for pure Dirichlet problems and conforming only at the vertices of the elements for mixed problems, and hence, the dimension of the resulting Schur complement matrix is quite small. The method is a least-squares collocation method and the resulting normal equations are solved using preconditioned conjugate gradient method with an almost optimal preconditioner. The algorithm is suitable for a distributed memory parallel computer. The numerical results of a number of model problems are presented, which confirm the theoretical estimates.
引用
收藏
页码:117 / 143
页数:26
相关论文
共 27 条
[1]  
Babuska I.(1991)Efficient preconditioning for the SIAM J. Num. Anal 28 624-undefined
[2]  
Craig A.(1988) version of the finite element method in two dimensions SIAM J. Math. Anal 19 172-undefined
[3]  
Mandel J.(1988)Regularity of the solution of elliptic problems with piecewise analytic data. part-I SIAM J. Num. Anal. 25 837-undefined
[4]  
Pitkäranta J.(1990)The Num. Meth. PDEs 6 371-undefined
[5]  
Babuska I.(1994) version of the finite element method on domains with curved boundaries SIAM Rev. 36 578-undefined
[6]  
Guo B. Q.(1990)The p-version of the finite element method for domains with corners and for infinite domains SIAM J. Num. Anal. 27 885-undefined
[7]  
Babuska I.(1994)The J. Comp. Phys. 112 211-undefined
[8]  
Guo B. Q.(2001) and J. Comp. Appl. Math. 134 165-undefined
[9]  
Babuska I.(2002) versions of the finite element method, basic principles and properties Proc. Indian Acad. Sci. (Math. Sci.) 112(4) 601-undefined
[10]  
Oh H.-S.(2003)Spectral methods for initial boundary value problems – an alternative approach Proc. Indian Acad. Sci. (Math. Sci.) 113 395-undefined