Performance of Landsat 8 OLI and Sentinel 2 MSI Images Based on MNF Versus PCA Algorithms and Convolution Operators for Automatic Lithuanian Coastline Extraction

被引:0
|
作者
Gadal S. [1 ]
Gloaguen T. [1 ,2 ]
机构
[1] CNRS, ESPACE UMR 7300, Aix-Marseille Université, Université Côte-d’Azur, Avignon Université, Avignon
[2] Cultural and Spatial Environment Research Group, Faculty of Civil Engineering and Architecture, Kaunas University of Technology, Kaunas
关键词
Coastline recognition; Convolution operators; Lithuania; Minimum noise fraction; Principal component analysis;
D O I
10.1007/s42979-024-02623-9
中图分类号
学科分类号
摘要
Faced with the increasing coastalization in the world, exposing populations and activities to coastal risks, decision-support tools based on the extraction of coastlines by remote sensing have become essential for measuring coastal dynamics and developing future local planning. However, these tools are constrained by factors such as the choice of data or the extraction methods, etc. which influence the reliability of the data produced. The aim of this study is to evaluate the automatic coastline extraction methods using transformation algorithms and image enhancement operators from Landsat 8 OLI and Sentinel 2 MSI satellite data. The estimates are based on the average distances and the average differences in annual variation rates between the automatically extracted coastlines and the reference coastlines digitised manually from orthophotographs. Additional validation data are used, such as the prediction rate of coastal dynamics, the digitisation rate of the study area and an overall margin of error including georeferencing errors. The results show that coastlines modelled using the Principal Component Analysis transformation method with High Pass and Laplacian image enhancement filters generate the best performances. The good accuracy of coastline recognition with Sentinel 2 MSI satellite images coastline could be related to spatial and spectral resolution factors. © The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2024.
引用
收藏
相关论文
共 26 条
  • [1] Automatic Detection of Algal Blooms Using Sentinel-2 MSI and Landsat OLI Images
    Xu, Dandan
    Pu, Yihan
    Zhu, Mengyuan
    Luan, Zhaoqing
    Shi, Kun
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 8497 - 8511
  • [2] AUTOMATIC CO-REGISTRATION OF MULTI-TEMPORAL LANDSAT-8/OLI AND SENTINEL-2A/MSI IMAGES
    Skakun, S.
    Roger, J. -C.
    Vermote, E.
    Justice, C.
    Masek, J.
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 5272 - 5274
  • [3] Coastline information extraction based on the tasseled cap transformation of Landsat-8 OLI images
    Chen, Chao
    Fu, Jiaoqi
    Zhang, Shuai
    Zhao, Xin
    ESTUARINE COASTAL AND SHELF SCIENCE, 2019, 217 : 281 - 291
  • [4] Evaluation of Landsat-8 OLI and Sentinel-2 MSI images for estimating the ecological quality of port waters
    Pieri, Maurizio
    Massi, Luca
    Nuccio, Caterina
    Lazzara, Luigi
    Scapini, Felicita
    Rossano, Claudia
    Maselli, Fabio
    EUROPEAN JOURNAL OF REMOTE SENSING, 2021, 54 (01) : 281 - 295
  • [5] Evaluation and optimal selection of Dunhuang radiometric calibration site based on OLI/Landsat 8 and MSI/Sentinel 2 data
    Zhu, Sifeng
    Li, Zhengqiang
    Hu, Xiuqing
    Qie, Lili
    Xu, Hua
    Qiao, Rui
    Zhang, Yuhuan
    Golry, Philippe
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2022, 43 (05) : 1684 - 1702
  • [6] A Proposal for Automatic Coastline Extraction from Landsat 8 OLI Images Combining Modified Optimum Index Factor (MOIF) and K-Means
    Figliomeni, Francesco Giuseppe
    Guastaferro, Francesca
    Parente, Claudio
    Vallario, Andrea
    REMOTE SENSING, 2023, 15 (12)
  • [7] Performance of chlorophyll prediction indices forEragrostis tefat Sentinel-2 MSI and Landsat-8 OLI spectral resolutions
    Flynn, K. Colton
    Frazier, Amy E.
    Admas, Sintayehu
    PRECISION AGRICULTURE, 2020, 21 (05) : 1057 - 1071
  • [8] Monitoring gas flaring in Texas using time-series sentinel-2 MSI and landsat-8 OLI images
    Wu, Wei
    Liu, Yongxue
    Rogers, Brendan M.
    Xu, Wenxuan
    Dong, Yanzhu
    Lu, Wanyu
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2022, 114
  • [9] Performance of chlorophyll prediction indices for Eragrostis tef at Sentinel-2 MSI and Landsat-8 OLI spectral resolutions
    K. Colton Flynn
    Amy E. Frazier
    Sintayehu Admas
    Precision Agriculture, 2020, 21 : 1057 - 1071
  • [10] Remote sensing of the chlorophyll-a based on OLI/Landsat-8 and MSI/Sentinel-2A (Barra Bonita reservoir, Brazil)
    Watanabe, Fernanda
    Alcantara, Enner
    Rodrigues, Thanan
    Rotta, Luiz
    Bernardo, Nariane
    Imai, Nilton
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2018, 90 (02): : 1987 - 2000