Uncertainty quantification with hybrid α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-cut

被引:0
作者
Seyed Sadredin Mousavi
Saeed Behbahani
机构
[1] Isfahan University of Technology,Department of Mechanical Engineering
关键词
Parameter uncertainty; -Cut; Modified ; -cut; Monte Carlo simulation; Hybrid ; -cut;
D O I
10.1007/s00500-018-3378-4
中图分类号
学科分类号
摘要
Inevitable uncertainties in engineering system’s parameters may cause variation and statistical distribution in behavior and performance specifications. Non-deterministic analysis with low computational cost should be carried out during the design stage, in order to assess the reliability of a product. Fuzzy approaches are reliably capable of modeling and analyzing ambiguous and unclear information using linguistic variables. The α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-cut is among the most popular fuzzy approaches, which has computationally superior performance for analyzing the uncertainties; however, it cannot take full effects of the nonlinearities and variables’ correlation into account. In this article, modified α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-cut is introduced which utilizes different input variables’ discretization and combination method. This approach is a fuzzy representation of discretized Monte Carlo simulation that, unlike α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-cut, tends to actual output’s distribution by tightening the discretization. The proposed modified approach has higher computational cost than the simple α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-cut, but still much less than the Mont Carlo simulation. It is shown that since each input parameter has different nonlinear effect on the output parameters, one can apply a combination of the modified and conventional α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-cut in order to reduce computational effort. This leads to a hybrid approach which is introduced in this article for the first time.
引用
收藏
页码:7321 / 7331
页数:10
相关论文
共 48 条
[41]   A fast modified L1¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{L1}$$\end{document} finite difference method for time fractional diffusion equations with weakly singular solution [J].
Haili Qiao ;
Aijie Cheng .
Journal of Applied Mathematics and Computing, 2024, 70 (4) :3631-3660
[42]   A sparse optimization problem with hybrid L2-Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2{\text {-}}L_p$$\end{document} regularization for application of magnetic resonance brain images [J].
Xuerui Gao ;
Yanqin Bai ;
Qian Li .
Journal of Combinatorial Optimization, 2021, 42 (4) :760-784
[43]   Research on hybrid β-energy spectral analysis algorithm based on Fourier series functionResearch on hybrid β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}-energy spectral analysis algorithm based on...H. Fan et al. [J].
Hao Fan ;
Jun Qin ;
Bao-Hua Liu ;
Tin-Xuan Yuan ;
Wei Zhou .
Nuclear Science and Techniques, 2025, 36 (6)
[44]   Patient-specific dosimetry adapted to variable number of SPECT/CT time-points per cycle for 177\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{177}$$\end{document}Lu-DOTATATE therapy [J].
Laure Vergnaud ;
Anne-Laure Giraudet ;
Aurélie Moreau ;
Julien Salvadori ;
Alessio Imperiale ;
Thomas Baudier ;
Jean-Noël Badel ;
David Sarrut .
EJNMMI Physics, 9 (1)
[45]   Analysis of CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {CO}_2$$\end{document} reduction potentials and component load collectives of 48 V-hybrids under real-driving conditions [J].
Daniel Förster ;
Lukas Decker ;
Martin Doppelbauer ;
Frank Gauterin .
Automotive and Engine Technology, 2021, 6 (1-2) :45-62
[46]   A comparative study of two fractional nonlinear optical model via modified G′G2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( \frac{G^{\prime }}{G^2}\right)$$\end{document}-expansion method [J].
Abdul Saboor ;
Muhammad Shakeel ;
Xinge Liu ;
Asim Zafar ;
Muhammad Ashraf .
Optical and Quantum Electronics, 2024, 56 (2)
[47]   Electronic and magnetic properties of Co2FeSi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{Co}}_{2}\mathrm{FeSi}$$\end{document}: ab-initio calculations, mean-field approximation and Monte Carlo simulation [J].
S Amellah ;
H Zaari ;
H Bouhani ;
F Elyahyaoui ;
A Benyoussef ;
A El Kenz .
Bulletin of Materials Science, 46 (3)
[48]   A numerical study of laminar/transitional shock–boundary layer interaction on a hypersonic double wedge using a modified γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}-transition modelA numerical study of laminar/transitional shock–boundary layer interaction on a hypersonic...R. C. DiviaHarshaVardini et al. [J].
R. C. DiviaHarshaVardini ;
G. Rajesh ;
K. Arul Prakash .
Shock Waves, 2024, 34 (6) :515-525