Uncertainty quantification with hybrid α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-cut

被引:0
作者
Seyed Sadredin Mousavi
Saeed Behbahani
机构
[1] Isfahan University of Technology,Department of Mechanical Engineering
关键词
Parameter uncertainty; -Cut; Modified ; -cut; Monte Carlo simulation; Hybrid ; -cut;
D O I
10.1007/s00500-018-3378-4
中图分类号
学科分类号
摘要
Inevitable uncertainties in engineering system’s parameters may cause variation and statistical distribution in behavior and performance specifications. Non-deterministic analysis with low computational cost should be carried out during the design stage, in order to assess the reliability of a product. Fuzzy approaches are reliably capable of modeling and analyzing ambiguous and unclear information using linguistic variables. The α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-cut is among the most popular fuzzy approaches, which has computationally superior performance for analyzing the uncertainties; however, it cannot take full effects of the nonlinearities and variables’ correlation into account. In this article, modified α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-cut is introduced which utilizes different input variables’ discretization and combination method. This approach is a fuzzy representation of discretized Monte Carlo simulation that, unlike α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-cut, tends to actual output’s distribution by tightening the discretization. The proposed modified approach has higher computational cost than the simple α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-cut, but still much less than the Mont Carlo simulation. It is shown that since each input parameter has different nonlinear effect on the output parameters, one can apply a combination of the modified and conventional α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-cut in order to reduce computational effort. This leads to a hybrid approach which is introduced in this article for the first time.
引用
收藏
页码:7321 / 7331
页数:10
相关论文
共 48 条