On approximation by some Bernstein–Kantorovich exponential-type polynomials

被引:0
作者
Ali Aral
Diana Otrocol
Ioan Raşa
机构
[1] Kırıkkale University,Department of Mathematics, Faculty of Sciences and Arts
[2] Technical University of Cluj-Napoca,Department of Mathematics, Faculty of Automation and Computer Science
[3] Romanian Academy,Tiberiu Popoviciu Institute of Numerical Analysis
来源
Periodica Mathematica Hungarica | 2019年 / 79卷
关键词
Bernstein–Kantorovich operator; Uniform convergence; Modulus of continuity;
D O I
暂无
中图分类号
学科分类号
摘要
Since the introduction of Bernstein operators, many authors defined and/or studied Bernstein type operators and their generalizations, among them are Morigi and Neamtu (Adv Comput Math 12:133–149, 2000). They proposed an analog of classical Bernstein operator and proved some convergence results for continuous functions. Herein, we introduce their integral extensions in Kantorovich sense by replacing the usual differential and integral operators with their more general analogues. By means of these operators, we are able to reconstruct the functions which are not necessarily continuous. It is shown that the operators form an approximation process in both C0,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C\left[ 0,1\right] $$\end{document} and Lp,μ0,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{p,\mu }\left[ 0,1\right] $$\end{document}, which is an exponentially weighted space. Also, quantitative results are stated in terms of appropriate moduli of smoothness and K-functionals. Furthermore, a quantitative Voronovskaya type result is presented.
引用
收藏
页码:236 / 254
页数:18
相关论文
共 19 条
  • [1] Acar T(2018)Approximation by bivariate(p; q)-Bernstein-Kantorovich operators Iran. J. Sci. Technol. Trans. A Sci. 42 655-662
  • [2] Aral A(2006)On a sequence of positive linear operators associated with a continuous selection of Borel measures Mediterr. J. Math. 3 363-382
  • [3] Mohiuddine SA(2017)A generalization of Kantorovich operators for convex compact subsets Banach J. Math. Anal. 11 591-614
  • [4] Altomare F(2018)Elliptic differential operators and positive semigroups associated with generalized Kantorovich operators J. Math. Anal. Appl. 458 153-173
  • [5] Leonessa V(1990)Kantorovich–Bernstein polynomials Constr. Approx. 6 421-435
  • [6] Altomare F(2000)Some results for a class of generalized polynomials Adv. Comput. Math. 12 133-149
  • [7] Cappelletti Montano M(2013)A note on Bernstein–Kantorovich operators Bull. Univ. Transilvania of Braşov, Series III 6(55) 27-32
  • [8] Leonessa V(1961)Der Wert einiger Konstanten in der Theorie der Approximation mit Bernstein-Polynomen Numer. Math. 3 107-116
  • [9] Raşa I(undefined)undefined undefined undefined undefined-undefined
  • [10] Altomare F(undefined)undefined undefined undefined undefined-undefined