Cycles and Girth in Pebble Assignment Graphs

被引:0
|
作者
E. Fiorini
G. Johnston
M. Lind
A. Woldar
T. W. H. Wong
机构
[1] Dimacs–Rutgers University,
[2] Villanova University,undefined
[3] University Scholars Program,undefined
[4] Kutztown University of Pennsylvania,undefined
来源
Graphs and Combinatorics | 2022年 / 38卷
关键词
Pebbling; cycles; Girth; Assignment graph; Multiassignment graph; Endstates; Dominance; Primary 05C75; Secondary 05C57;
D O I
暂无
中图分类号
学科分类号
摘要
An assignment graph [SG]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[S_G]$$\end{document} is a single-rooted Hasse diagram depicting all possible states resulting from a prescribed pebble assignment SG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_G$$\end{document} on a simple graph G. In this paper, we construct assignment graphs of every possible (even) girth and give necessary and sufficient conditions for [SG]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[S_G]$$\end{document} to have girth 4. We extend the notion of an assignment graph to that of a multiassignment graph (a multirooted Hasse diagram formed by amalgamating two or more assignment graphs on G) and resolve the question: When can a multiassignment graph be a subgraph of some assignment graph? Resolution of this question is critical to our main result: Every possible cycle type of girth at most 2ncan be simultaneously realized in a suitable assignment graph. The paper concludes with a proof that the girth of [SG]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[S_G]$$\end{document} is limited to 4,6,∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4,6,\infty $$\end{document} when G is a forest.
引用
收藏
相关论文
共 50 条
  • [41] Total domination in graphs with given girth
    Henning, Michael A.
    Yeo, Anders
    GRAPHS AND COMBINATORICS, 2008, 24 (04) : 333 - 348
  • [42] Token Sliding on Graphs of Girth Five
    Bartier, Valentin
    Bousquet, Nicolas
    Hanna, Jihad
    Amer, E. Mouawad B.
    Siebertz, Sebastian
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE (WG 2022), 2022, 13453 : 56 - 69
  • [43] On the girth and diameter of generalized Johnson graphs
    Agong, Louis Anthony
    Amarra, Carmen
    Caughman, John S.
    Herman, Ari J.
    Terada, Taiyo S.
    DISCRETE MATHEMATICS, 2018, 341 (01) : 138 - 142
  • [44] Extremal bipartite graphs with high girth
    Balbuena, C.
    Garcia-Vazquez, P.
    Marcote, X.
    Valenzuela, J. C.
    ARS COMBINATORIA, 2007, 83 : 3 - 14
  • [45] Short even cycles in cages with odd girth
    Jiang, T
    ARS COMBINATORIA, 2001, 59 : 165 - 169
  • [46] Large girth and small oriented diameter graphs
    Cochran, Garner
    DISCRETE MATHEMATICS, 2024, 347 (04)
  • [47] The circular chromatic index of graphs of high girth
    Kaiser, Tomas
    Kral, Daniel
    Skrekovski, Riste
    Zhu, Xuding
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2007, 97 (01) : 1 - 13
  • [48] Equitable coloring planar graphs with large girth
    Wu, Jianliang
    Wang, Ping
    DISCRETE MATHEMATICS, 2008, 308 (5-6) : 985 - 990
  • [49] Extremal Edge-Girth-Regular Graphs
    Drglin, Ajda Zavrtanik
    Filipovski, Slobodan
    Jajcay, Robert
    Raiman, Tom
    GRAPHS AND COMBINATORICS, 2021, 37 (06) : 2139 - 2154
  • [50] Girth 5 Graphs from Elliptic Semiplanes
    Funk, M.
    NOTE DI MATEMATICA, 2009, 29 : 91 - 113