Cycles and Girth in Pebble Assignment Graphs

被引:0
|
作者
E. Fiorini
G. Johnston
M. Lind
A. Woldar
T. W. H. Wong
机构
[1] Dimacs–Rutgers University,
[2] Villanova University,undefined
[3] University Scholars Program,undefined
[4] Kutztown University of Pennsylvania,undefined
来源
Graphs and Combinatorics | 2022年 / 38卷
关键词
Pebbling; cycles; Girth; Assignment graph; Multiassignment graph; Endstates; Dominance; Primary 05C75; Secondary 05C57;
D O I
暂无
中图分类号
学科分类号
摘要
An assignment graph [SG]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[S_G]$$\end{document} is a single-rooted Hasse diagram depicting all possible states resulting from a prescribed pebble assignment SG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_G$$\end{document} on a simple graph G. In this paper, we construct assignment graphs of every possible (even) girth and give necessary and sufficient conditions for [SG]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[S_G]$$\end{document} to have girth 4. We extend the notion of an assignment graph to that of a multiassignment graph (a multirooted Hasse diagram formed by amalgamating two or more assignment graphs on G) and resolve the question: When can a multiassignment graph be a subgraph of some assignment graph? Resolution of this question is critical to our main result: Every possible cycle type of girth at most 2ncan be simultaneously realized in a suitable assignment graph. The paper concludes with a proof that the girth of [SG]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[S_G]$$\end{document} is limited to 4,6,∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4,6,\infty $$\end{document} when G is a forest.
引用
收藏
相关论文
共 50 条
  • [31] On Tensor Product of Graphs, Girth and Triangles
    Patil, H. P.
    Raja, V.
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2015, 10 (01): : 139 - 147
  • [32] Secret sharing on large girth graphs
    László Csirmaz
    Péter Ligeti
    Cryptography and Communications, 2019, 11 : 399 - 410
  • [33] The hub number, girth and Mycielski graphs
    Liu, Xiaoping
    Dang, Zhilan
    Wu, Baoyindureng
    INFORMATION PROCESSING LETTERS, 2014, 114 (10) : 561 - 563
  • [34] Secret sharing on large girth graphs
    Csirmaz, Laszlo
    Ligeti, Peter
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2019, 11 (03): : 399 - 410
  • [35] Total Domination in Graphs with Given Girth
    Michael A. Henning
    Anders Yeo
    Graphs and Combinatorics, 2008, 24 : 333 - 348
  • [36] Symmetric cubic graphs of small girth
    Conder, Marston
    Nedela, Roman
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2007, 97 (05) : 757 - 768
  • [37] On the cop number of graphs of high girth
    Bradshaw, Peter
    Hosseini, Seyyed Aliasghar
    Mohar, Bojan
    Stacho, Ladislav
    JOURNAL OF GRAPH THEORY, 2023, 102 (01) : 15 - 34
  • [38] On the structure of extremal graphs of high girth
    Lazebnik, F
    Wang, P
    JOURNAL OF GRAPH THEORY, 1997, 26 (03) : 147 - 153
  • [39] A Faster Algorithm for Computing the Girth of Planar and Bounded Genus Graphs
    Djidjev, Hristo N.
    ACM TRANSACTIONS ON ALGORITHMS, 2010, 7 (01)
  • [40] Girth of {C3, ... , Cs}-free extremal graphs
    Abajo, E.
    Balbuena, C.
    Dianez, A.
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (09) : 1311 - 1318