共 50 条
Cycles and Girth in Pebble Assignment Graphs
被引:0
|作者:
E. Fiorini
G. Johnston
M. Lind
A. Woldar
T. W. H. Wong
机构:
[1] Dimacs–Rutgers University,
[2] Villanova University,undefined
[3] University Scholars Program,undefined
[4] Kutztown University of Pennsylvania,undefined
来源:
Graphs and Combinatorics
|
2022年
/
38卷
关键词:
Pebbling;
cycles;
Girth;
Assignment graph;
Multiassignment graph;
Endstates;
Dominance;
Primary 05C75;
Secondary 05C57;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
An assignment graph [SG]\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$[S_G]$$\end{document} is a single-rooted Hasse diagram depicting all possible states resulting from a prescribed pebble assignment SG\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$S_G$$\end{document} on a simple graph G. In this paper, we construct assignment graphs of every possible (even) girth and give necessary and sufficient conditions for [SG]\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$[S_G]$$\end{document} to have girth 4. We extend the notion of an assignment graph to that of a multiassignment graph (a multirooted Hasse diagram formed by amalgamating two or more assignment graphs on G) and resolve the question: When can a multiassignment graph be a subgraph of some assignment graph? Resolution of this question is critical to our main result: Every possible cycle type of girth at most 2ncan be simultaneously realized in a suitable assignment graph. The paper concludes with a proof that the girth of [SG]\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$[S_G]$$\end{document} is limited to 4,6,∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$4,6,\infty $$\end{document} when G is a forest.
引用
收藏
相关论文