Cycles and Girth in Pebble Assignment Graphs

被引:0
|
作者
E. Fiorini
G. Johnston
M. Lind
A. Woldar
T. W. H. Wong
机构
[1] Dimacs–Rutgers University,
[2] Villanova University,undefined
[3] University Scholars Program,undefined
[4] Kutztown University of Pennsylvania,undefined
来源
Graphs and Combinatorics | 2022年 / 38卷
关键词
Pebbling; cycles; Girth; Assignment graph; Multiassignment graph; Endstates; Dominance; Primary 05C75; Secondary 05C57;
D O I
暂无
中图分类号
学科分类号
摘要
An assignment graph [SG]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[S_G]$$\end{document} is a single-rooted Hasse diagram depicting all possible states resulting from a prescribed pebble assignment SG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_G$$\end{document} on a simple graph G. In this paper, we construct assignment graphs of every possible (even) girth and give necessary and sufficient conditions for [SG]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[S_G]$$\end{document} to have girth 4. We extend the notion of an assignment graph to that of a multiassignment graph (a multirooted Hasse diagram formed by amalgamating two or more assignment graphs on G) and resolve the question: When can a multiassignment graph be a subgraph of some assignment graph? Resolution of this question is critical to our main result: Every possible cycle type of girth at most 2ncan be simultaneously realized in a suitable assignment graph. The paper concludes with a proof that the girth of [SG]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[S_G]$$\end{document} is limited to 4,6,∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4,6,\infty $$\end{document} when G is a forest.
引用
收藏
相关论文
共 50 条
  • [1] Cycles and Girth in Pebble Assignment Graphs
    Fiorini, E.
    Johnston, G.
    Lind, M.
    Woldar, A.
    Wong, T. W. H.
    GRAPHS AND COMBINATORICS, 2022, 38 (05)
  • [2] On Properties of Pebble Assignment Graphs
    M. Lind
    E. Fiorini
    A. Woldar
    Graphs and Combinatorics, 2022, 38
  • [3] On Properties of Pebble Assignment Graphs
    Lind, M.
    Fiorini, E.
    Woldar, A.
    GRAPHS AND COMBINATORICS, 2022, 38 (02)
  • [4] On the girth of extremal graphs without shortest cycles
    Balbuena, C.
    Cera, M.
    Dianez, A.
    Garcia-Vazquez, P.
    DISCRETE MATHEMATICS, 2008, 308 (23) : 5682 - 5690
  • [5] On Finding Bipartite Graphs With a Small Number of Short Cycles and Large Girth
    Dehghan, Ali
    Banihashemi, Amir H.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (10) : 6024 - 6036
  • [6] Hamiltonian Fuzzy Cycles in Generalized Quartic Fuzzy Graphs with Girth k
    Jayalakshmi, N.
    Kumar, S. Vimal
    Thangaraj, P.
    COMPUTATIONAL VISION AND BIO-INSPIRED COMPUTING, 2020, 1108 : 1190 - 1202
  • [7] PATH PARTITIONING PLANAR GRAPHS OF GIRTH 4 WITHOUT ADJACENT SHORT CYCLES
    Glebov, Aleksey Nikolaevich
    Zhamyanovna, Zambalaeva Dolgor
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2018, 15 : 1040 - 1047
  • [8] Girth and ?-choosability of graphs
    Gu, Yangyan
    Zhu, Xuding
    JOURNAL OF GRAPH THEORY, 2023, 103 (03) : 493 - 501
  • [9] Girth of pancake graphs
    Compeau, Phillip E. C.
    DISCRETE APPLIED MATHEMATICS, 2011, 159 (15) : 1641 - 1645
  • [10] Girth of sparse graphs
    Bollobás, B
    Szemerédi, E
    JOURNAL OF GRAPH THEORY, 2002, 39 (03) : 194 - 200