Fourier Type Error Analysis of the Direct Discontinuous Galerkin Method and Its Variations for Diffusion Equations

被引:0
作者
Mengping Zhang
Jue Yan
机构
[1] University of Science and Technology of China,Department of Mathematics
[2] Iowa State University,Department of Mathematics
来源
Journal of Scientific Computing | 2012年 / 52卷
关键词
Discontinuous Galerkin method; Diffusion equation; Stability; Consistency; Convergence; Supraconvergence;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we present Fourier type error analysis on the recent four discontinuous Galerkin methods for diffusion equations, namely the direct discontinuous Galerkin (DDG) method (Liu and Yan in SIAM J. Numer. Anal. 47(1):475–698, 2009); the DDG method with interface corrections (Liu and Yan in Commun. Comput. Phys. 8(3):541–564, 2010); and the DDG method with symmetric structure (Vidden and Yan in SIAM J. Numer. Anal., 2011); and a DG method with nonsymmetric structure (Yan, A discontinuous Galerkin method for nonlinear diffusion problems with nonsymmetric structure, 2011). The Fourier type L2 error analysis demonstrates the optimal convergence of the four DG methods with suitable numerical fluxes. The theoretical predicted errors agree well with the numerical results.
引用
收藏
页码:638 / 655
页数:17
相关论文
共 56 条
[1]  
Arnold D.N.(1982)An interior penalty finite element method with discontinuous elements SIAM J. Numer. Anal. 19 742-760
[2]  
Arnold D.N.(2001/2002)Unified analysis of discontinuous Galerkin methods for elliptic problems SIAM J. Numer. Anal. 39 1749-1779
[3]  
Brezzi F.(1977)Finite element methods for elliptic equations using nonconforming elements Math. Comput. 31 45-59
[4]  
Cockburn B.(1997)A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations J. Comput. Phys. 131 267-279
[5]  
Marini L.D.(1999)A discontinuous Comput. Methods Appl. Mech. Eng. 175 311-341
[6]  
Baker G.A.(2008) finite element method for convection-diffusion problems Electron. Trans. Numer. Anal. 30 107-127
[7]  
Bassi F.(2008)A weakly over-penalized symmetric interior penalty method Math. Comput. 77 699-730
[8]  
Rebay S.(2008)A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives J. Comput. Phys. 227 9612-9627
[9]  
Baumann C.E.(2009)Superconvergence and time evolution of discontinuous Galerkin finite element solutions Comput. Struct. 87 630-641
[10]  
Oden J.T.(1998)Superconvergence of local discontinuous Galerkin methods for one-dimensional convection-diffusion equations SIAM J. Numer. Anal. 35 2440-2463