Probabilistic clustering of time-evolving distance data

被引:0
|
作者
Julia E. Vogt
Marius Kloft
Stefan Stark
Sudhir S. Raman
Sandhya Prabhakaran
Volker Roth
Gunnar Rätsch
机构
[1] Memorial Sloan-Kettering Cancer Center,Computational Biology
[2] Humboldt University of Berlin,Department of Computer Science
[3] University of Zurich and ETH Zurich,Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering
[4] University of Basel,Department of Mathematics and Computer Science
来源
Machine Learning | 2015年 / 100卷
关键词
Cluster Model; Pairwise Distance; Dirichlet Process; Memorial Sloan Kettering Cancer Center; Wishart Distribution;
D O I
暂无
中图分类号
学科分类号
摘要
We present a novel probabilistic clustering model for objects that are represented via pairwise distances and observed at different time points. The proposed method utilizes the information given by adjacent time points to find the underlying cluster structure and obtain a smooth cluster evolution. This approach allows the number of objects and clusters to differ at every time point, and no identification on the identities of the objects is needed. Further, the model does not require the number of clusters being specified in advance—they are instead determined automatically using a Dirichlet process prior. We validate our model on synthetic data showing that the proposed method is more accurate than state-of-the-art clustering methods. Finally, we use our dynamic clustering model to analyze and illustrate the evolution of brain cancer patients over time.
引用
收藏
页码:635 / 654
页数:19
相关论文
共 50 条
  • [1] Probabilistic clustering of time-evolving distance data
    Vogt, Julia E.
    Kloft, Marius
    Stark, Stefan
    Raman, Sudhir S.
    Prabhakaran, Sandhya
    Roth, Volker
    Raetsch, Gunnar
    MACHINE LEARNING, 2015, 100 (2-3) : 635 - 654
  • [2] A Framework for Clustering Categorical Time-Evolving Data
    Cao, Fuyuan
    Liang, Jiye
    Bai, Liang
    Zhao, Xingwang
    Dang, Chuangyin
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2010, 18 (05) : 872 - 882
  • [3] Learning on time-evolving data
    Zhang, Chang-Shui
    Zhang, Jian-Wen
    Jisuanji Xuebao/Chinese Journal of Computers, 2013, 36 (02): : 310 - 316
  • [4] Local Motif Clustering on Time-Evolving Graphs
    Fu, Dongqi
    Zhou, Dawei
    He, Jingrui
    KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 390 - 400
  • [5] On the generation of time-evolving regional data
    Tzouramanis, T
    Vassilakopoulos, M
    Manolopoulos, Y
    GEOINFORMATICA, 2002, 6 (03) : 207 - 231
  • [6] On the Generation of Time-Evolving Regional Data*
    Theodoros Tzouramanis
    Michael Vassilakopoulos
    Yannis Manolopoulos
    GeoInformatica, 2002, 6 : 207 - 231
  • [7] Clustering of time-evolving scaling dynamics in a complex signal
    Saghir, Hamidreza
    Chau, Tom
    Kushki, Azadeh
    PHYSICAL REVIEW E, 2016, 94 (01)
  • [8] Visualising Time-evolving Semantic Biomedical Data
    Pereira, Arnaldo
    Rafael Almeida, Joao
    Lopes, Rui Pedro
    Oliveira, Jose Luis
    2022 IEEE 35TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS), 2022, : 264 - 269
  • [9] Comparison of access methods for time-evolving data
    Salzberg, B
    Tsotras, VJ
    ACM COMPUTING SURVEYS, 1999, 31 (02) : 158 - 221
  • [10] Clustering time-evolving networks using the spatiotemporal graph Laplacian
    Trower, Maia
    Conrad, Natasa Djurdjevac
    Klus, Stefan
    CHAOS, 2025, 35 (01)