A note on global existence of strong solution to the 3D micropolar equations with a damping term

被引:0
作者
Wen Wang
Yunchong Long
机构
[1] Changchun University of Chinese Medicine,School of Medical Information
[2] Changchun University of Chinese Medicine,Department of Propaganda
来源
Boundary Value Problems | / 2021卷
关键词
Micropolar equations; Damping; Global regularity;
D O I
暂无
中图分类号
学科分类号
摘要
This paper studies the Cauchy problem of the 3D incompressible micropolar equations with a damping term σ|u|β−1u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sigma |u|^{\beta -1}u$\end{document} (σ>0,1≤β<3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sigma >0, 1\le \beta <3$\end{document}). It is shown that the strong solutions exist globally for any 1≤β<3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1\le \beta <3$\end{document}.
引用
收藏
相关论文
共 15 条
[1]  
Cai X.(2008)Weak and strong solutions for the incompressible Navier–Stokes equations with damping J. Math. Anal. Appl. 343 799-809
[2]  
Jiu Q.(2013)Existence of smooth solutions to coupled chemotaxis-fluid equations Discrete Contin. Dyn. Syst. 33 2271-2297
[3]  
Chae M.(2016)A new regularity criterion for the Navier–Stokes equations in terms of the two components of the velocity Electron. J. Qual. Theory Differ. Equ. 2016 188-193
[4]  
Kang K.(2017)On the regularity criterion for the Navier–Stokes equations in terms of one directional derivative Asian-Eur. J. Math. 10 414-419
[5]  
Lee J.(2018)Global existence of strong solution to the 3D micropolar equations with a damping term Appl. Math. Lett. 83 1822-1825
[6]  
Gala S.(2011)On the uniqueness of strong solution to the incompressible Navier–Stokes equations with damping J. Math. Anal. Appl. 377 undefined-undefined
[7]  
Ragusa M.A.(2017)Global well-posedness to the incompressible Navier–Stokes equations with damping Electron. J. Qual. Theory Differ. Equ. 2017 undefined-undefined
[8]  
Gala S.(2012)Regularity and uniqueness for the 3D incompressible Navier–Stokes equations with damping Appl. Math. Lett. 25 undefined-undefined
[9]  
Ragusa M.A.(undefined)undefined undefined undefined undefined-undefined
[10]  
Ye Z.(undefined)undefined undefined undefined undefined-undefined