Saturating constructions for normed spaces

被引:0
|
作者
S. J. Szarek
N. Tomczak-Jaegermann
机构
[1] Université Pierre et Marie Curie,Equipe d’Analyse Fonctionnelle
[2] Case Western Reserve University,Department of Mathematics
[3] University of Alberta,Department of Mathematical and Statistical Sciences
来源
Geometric & Functional Analysis GAFA | 2004年 / 14卷
关键词
Normed Space; Space Versus; Convex Body; Large Section; Large Subspace;
D O I
暂无
中图分类号
学科分类号
摘要
We prove several results of the following type: given finite dimensional normed space V there exists another space X with log dim X = O(log dim V) and such that every subspace (or quotient) of X, whose dimension is not “too small,” contains a further subspace isometric to V. This sheds new light on the structure of such large subspaces or quotients (resp. large sections or projections of convex bodies) and allows us to solve several problems stated in the 1980s by V. Milman.
引用
收藏
页码:1352 / 1375
页数:23
相关论文
共 50 条
  • [31] On Wigner’s theorem in smooth normed spaces
    Dijana Ilišević
    Aleksej Turnšek
    Aequationes mathematicae, 2020, 94 : 1257 - 1267
  • [32] ON LINEAR FUNCTIONAL EQUATIONS AND COMPLETENESS OF NORMED SPACES
    Fosner, Ajda
    Ger, Roman
    Gilanyi, Attila
    Moslehian, Mohammad Sal
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2013, 7 (01): : 196 - 200
  • [33] A NOTE ON APPROXIMATION OF CONTINUOUS FUNCTIONS ON NORMED SPACES
    Mytrofanov, M. A.
    Ravsky, A., V
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2020, 12 (01) : 107 - 110
  • [34] Extremally distant normed spaces with additional restrictions
    F. L. Bakharev
    Mathematical Notes, 2006, 79 : 314 - 326
  • [35] A Variant of Wigner’s Theorem in Normed Spaces
    Dijana Ilišević
    Aleksej Turnšek
    Mediterranean Journal of Mathematics, 2021, 18
  • [36] Duality of κ-normed topological vector spaces and their applications
    Ludkovsky S.V.
    Journal of Mathematical Sciences, 2009, 157 (2) : 367 - 385
  • [37] Projections in normed linear spaces and sufficient enlargements
    Ostrovskii, MI
    ARCHIV DER MATHEMATIK, 1998, 71 (04) : 315 - 324
  • [38] THE FERMAT-TORRICELLI PROBLEM IN NORMED SPACES
    Ilyukhin, Daniil A.
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2024, 39 (05): : 943 - 958
  • [39] Analogs of Markov's inequality in normed spaces
    Skalyga, VI
    MATHEMATICAL NOTES, 2004, 75 (5-6) : 739 - 743
  • [40] On Boundary Value Problems in Normed Fuzzy Spaces
    Farajzadeh, Ali
    Hosseinpour, Azadeh
    Kumam, Wiyada
    THAI JOURNAL OF MATHEMATICS, 2022, 20 (01): : 305 - 313