Saturating constructions for normed spaces

被引:0
|
作者
S. J. Szarek
N. Tomczak-Jaegermann
机构
[1] Université Pierre et Marie Curie,Equipe d’Analyse Fonctionnelle
[2] Case Western Reserve University,Department of Mathematics
[3] University of Alberta,Department of Mathematical and Statistical Sciences
来源
Geometric & Functional Analysis GAFA | 2004年 / 14卷
关键词
Normed Space; Space Versus; Convex Body; Large Section; Large Subspace;
D O I
暂无
中图分类号
学科分类号
摘要
We prove several results of the following type: given finite dimensional normed space V there exists another space X with log dim X = O(log dim V) and such that every subspace (or quotient) of X, whose dimension is not “too small,” contains a further subspace isometric to V. This sheds new light on the structure of such large subspaces or quotients (resp. large sections or projections of convex bodies) and allows us to solve several problems stated in the 1980s by V. Milman.
引用
收藏
页码:1352 / 1375
页数:23
相关论文
共 50 条
  • [11] Zone diagrams in Euclidean spaces and in other normed spaces
    Akitoshi Kawamura
    Jiří Matoušek
    Takeshi Tokuyama
    Mathematische Annalen, 2012, 354 : 1201 - 1221
  • [12] Reduced Convex Bodies in Finite Dimensional Normed Spaces: A Survey
    Marek Lassak
    Horst Martini
    Results in Mathematics, 2014, 66 : 405 - 426
  • [13] A generalization of metric, normed, and unitary spaces
    Borubaev, A. A.
    DOKLADY MATHEMATICS, 2014, 89 (02) : 154 - 156
  • [14] On curvature of surfaces immersed in normed spaces
    Balestro, Vitor
    Martini, Horst
    Teixeira, Ralph
    MONATSHEFTE FUR MATHEMATIK, 2020, 192 (02): : 291 - 309
  • [15] VARIOUS NOTIONS OF ORTHOGONALITY IN NORMED SPACES
    Okelo, N. B.
    Agure, J. O.
    Oleche, P. O.
    ACTA MATHEMATICA SCIENTIA, 2013, 33 (05) : 1387 - 1397
  • [16] On curvature of surfaces immersed in normed spaces
    Vitor Balestro
    Horst Martini
    Ralph Teixeira
    Monatshefte für Mathematik, 2020, 192 : 291 - 309
  • [17] VARIOUS NOTIONS OF ORTHOGONALITY IN NORMED SPACES
    N.B.OKELO
    J.O.AGURE
    P.O.OLECHE
    ActaMathematicaScientia, 2013, 33 (05) : 1387 - 1397
  • [18] A generalization of metric, normed, and unitary spaces
    A. A. Borubaev
    Doklady Mathematics, 2014, 89 : 154 - 156
  • [19] NUMERICAL RANGE AND ORTHOGONALITY IN NORMED SPACES
    Bachir, A.
    Segres, A.
    FILOMAT, 2009, 23 (01) : 21 - 41
  • [20] Reduced Convex Bodies in Finite Dimensional Normed Spaces: A Survey
    Lassak, Marek
    Martini, Horst
    RESULTS IN MATHEMATICS, 2014, 66 (3-4) : 405 - 426