Saturating constructions for normed spaces

被引:0
|
作者
S. J. Szarek
N. Tomczak-Jaegermann
机构
[1] Université Pierre et Marie Curie,Equipe d’Analyse Fonctionnelle
[2] Case Western Reserve University,Department of Mathematics
[3] University of Alberta,Department of Mathematical and Statistical Sciences
来源
Geometric & Functional Analysis GAFA | 2004年 / 14卷
关键词
Normed Space; Space Versus; Convex Body; Large Section; Large Subspace;
D O I
暂无
中图分类号
学科分类号
摘要
We prove several results of the following type: given finite dimensional normed space V there exists another space X with log dim X = O(log dim V) and such that every subspace (or quotient) of X, whose dimension is not “too small,” contains a further subspace isometric to V. This sheds new light on the structure of such large subspaces or quotients (resp. large sections or projections of convex bodies) and allows us to solve several problems stated in the 1980s by V. Milman.
引用
收藏
页码:1352 / 1375
页数:23
相关论文
共 50 条
  • [1] Angles in normed spaces
    Vitor Balestro
    Ákos G. Horváth
    Horst Martini
    Ralph Teixeira
    Aequationes mathematicae, 2017, 91 : 201 - 236
  • [2] On the smoothness of normed spaces
    Józef Banaś
    Justyna Ochab
    Tomasz Zając
    Annals of Functional Analysis, 2024, 15
  • [3] Angles in normed spaces
    Balestro, Vitor
    Horvath, Akos G.
    Martini, Horst
    Teixeira, Ralph
    AEQUATIONES MATHEMATICAE, 2017, 91 (02) : 201 - 236
  • [4] On the smoothness of normed spaces
    Banas, Jozef
    Ochab, Justyna
    Zajac, Tomasz
    ANNALS OF FUNCTIONAL ANALYSIS, 2024, 15 (01)
  • [5] ANGLES AND A CLASSIFICATION OF NORMED SPACES
    Thurey, Volker W.
    ANNALS OF FUNCTIONAL ANALYSIS, 2013, 4 (01): : 114 - 137
  • [6] κ-normed topological vector spaces
    Lyudkovskii, SV
    SIBERIAN MATHEMATICAL JOURNAL, 2000, 41 (01) : 141 - 154
  • [7] On Bisectors in Minkowski Normed Spaces
    Á. G. Horváth
    Acta Mathematica Hungarica, 2000, 89 : 233 - 246
  • [8] On bisectors in Minkowski normed spaces
    Horváth, AG
    ACTA MATHEMATICA HUNGARICA, 2000, 89 (03) : 233 - 246
  • [9] OPTIMAL BUNDLES IN NORMED SPACES
    Cuenya, H. H.
    Levis, F. E.
    Rodriguez, C. N.
    ANNALS OF FUNCTIONAL ANALYSIS, 2013, 4 (02): : 87 - 96
  • [10] Zone diagrams in Euclidean spaces and in other normed spaces
    Kawamura, Akitoshi
    Matousek, Jiri
    Tokuyama, Takeshi
    MATHEMATISCHE ANNALEN, 2012, 354 (04) : 1201 - 1221