A note on regularity criteria in terms of pressure for the 3D viscous MHD equations

被引:0
作者
S. Gala
M. A. Ragusa
机构
[1] Université Abdelhamid Ibn Badis de Mostaganem,
[2] Università degli Studi di Catania,undefined
来源
Mathematical Notes | 2017年 / 102卷
关键词
MHD equations; regularity criteria; critical Besov space;
D O I
暂无
中图分类号
学科分类号
摘要
This note is devoted to the study of the smoothness of weak solutions to the Cauchy problem for three-dimensional magneto-hydrodynamic system in terms of the pressure. It is proved that if the pressure π belongs to L2(0, T, Ḃ∞,∞−1(ℝ3)) or the gradient field of pressure ∇π belongs to L2/3(0, T, BMO(ℝ3)), then the corresponding weak solution (u, b) remains smooth on [0, T].
引用
收藏
页码:475 / 479
页数:4
相关论文
共 25 条
  • [1] Sermange M.(1983)Some mathematical questions related to the MHD equations Comm. Pure Appl. Math. 36 635-664
  • [2] Temam R.(1997)Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD Comm. Math. Phys. 184 443-455
  • [3] Caflish R. E.(2008)On the regularity criterion of weak solution for the 3D viscous magneto-hydrodynamics equations Comm. Math. Phys. 284 919-930
  • [4] Klapper I.(2010)Two regularity criteria for the 3D MHD equations J. Differential Equations 248 2263-2274
  • [5] Steel G.(2009)BKM’s criterion and global weak solutions for magnetohydrodynamics with zero viscosity Discrete Contin. Dyn. Syst. 25 575-583
  • [6] Chen Q.(2011)Regularity criteria in terms of the pressure for the Navier–Stokes equations in the critical Morrey–Campanato space Z. Anal. Anwend. 30 83-93
  • [7] Miao C.(2012)On regularity criteria in terms of pressure for the 3D viscousMHDequations Appl. Anal. 91 947-952
  • [8] Zhang Z.(2012)On the pressure regularity criterion of the 3D Navier–Stokes equations J. Math. Anal. Appl. 393 413-420
  • [9] Cao C.(2006)On regularity criteria in terms of pressure for the Navier–Stokes equations in R3 Proc. Amer. Math. Soc. 134 149-156
  • [10] Wu J.(2007)The Navier–Stokes equations in the criticalMorrey–Campanato space Rev. Mat. Iberoam. 23 897-930