Existence of positive solutions for a generalized and fractional ordered Thomas-Fermi theory of neutral atoms

被引:0
作者
Wenquan Feng
Shurong Sun
Ying Sun
机构
[1] University of Jinan,School of Mathematical Science
来源
Advances in Difference Equations | / 2015卷
关键词
fractional differential equation; singular boundary value problem; positive solution; Thomas-Fermi theory; 34A08; 34B16; 34B18;
D O I
暂无
中图分类号
学科分类号
摘要
The singular boundary value problem we discuss is as follows: D0+αCu(t)=λq(t)f(t,u(t)),0<t<1,α1u(0)+α2u′(0)=a,β1u(1)+β2u′(1)=b,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{aligned}& {}^{\mathrm{C}}D_{0^{+}}^{\alpha}u(t)=\lambda q(t)f \bigl(t,u(t)\bigr),\quad 0< t< 1, \\& \alpha_{1}u(0)+\alpha_{2}u'(0)=a,\qquad \beta_{1}u(1)+\beta_{2}u'(1)=b, \end{aligned}$$ \end{document} where 1<α≤2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1<\alpha\leq2$\end{document}, λ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda>0$\end{document} is a parameter, D0+αC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${}^{\mathrm{C}}D_{0^{+}}^{\alpha}$\end{document} is the Caputo fractional derivative. We present the existence of positive solutions for a fractional boundary value problem modeled from the Thomas-Fermi equation subjected to Sturm-Liouville boundary conditions.
引用
收藏
相关论文
共 50 条
[41]   Existence and uniqueness of positive solutions for a fractional differential equation with integral boundary conditions [J].
Qiao, Yan ;
Zhou, Zongfu .
ADVANCES IN DIFFERENCE EQUATIONS, 2016,
[42]   Existence and uniqueness of positive solutions for a fractional differential equation with integral boundary conditions [J].
Yan Qiao ;
Zongfu Zhou .
Advances in Difference Equations, 2016
[43]   Existence of positive solutions of the boundary value problem for nonlinear fractional differential equations [J].
Li, C. F. ;
Luo, X. N. ;
Zhou, Yong .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (03) :1363-1375
[44]   Existence of positive solutions for the boundary value problem of nonlinear fractional differential equations [J].
Yang, Xiong ;
Wei, Zhongli ;
Dong, Wei .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (01) :85-92
[45]   Existence and uniqueness of positive solutions for higher order nonlocal fractional differential equations [J].
Zhang, Xinguang ;
Han, Yuefeng .
APPLIED MATHEMATICS LETTERS, 2012, 25 (03) :555-560
[46]   ASYMPTOTIC BEHAVIOR AND EXISTENCE OF POSITIVE SOLUTIONS FOR A NEUTRAL DIFFERENCE EQUATION [J].
戴斌祥 ;
黄立宏 .
Annals of Differential Equations, 1998, (01) :24-30
[47]   Existence of positive solutions for weighted fractional order differential equations [J].
Abdo, Mohammed S. ;
Abdeljawad, Thabet ;
Ali, Saeed M. ;
Shah, Kamal ;
Jarad, Fahd .
CHAOS SOLITONS & FRACTALS, 2020, 141
[48]   Existence and concentration of positive solutions to a fractional system with saturable term [J].
Li, Menghui ;
He, Jinchun ;
Xu, Haoyuan ;
Yang, Meihua .
STOCHASTICS AND DYNAMICS, 2022, 22 (05)
[49]   EXISTENCE AND UNIQUENESS OF POSITIVE SOLUTIONS TO FRACTIONAL BOUNDARY VALUE PROBLEMS [J].
Li Xu ;
Chengbo Zhai .
Annals of Applied Mathematics, 2014, (03) :352-358
[50]   On the Existence of Positive Solutions for a Boundary Valued Problem of Fractional Order [J].
El-Shahed, Moustafa .
THAI JOURNAL OF MATHEMATICS, 2007, 5 (01) :143-150