Existence of positive solutions for a generalized and fractional ordered Thomas-Fermi theory of neutral atoms

被引:0
作者
Wenquan Feng
Shurong Sun
Ying Sun
机构
[1] University of Jinan,School of Mathematical Science
来源
Advances in Difference Equations | / 2015卷
关键词
fractional differential equation; singular boundary value problem; positive solution; Thomas-Fermi theory; 34A08; 34B16; 34B18;
D O I
暂无
中图分类号
学科分类号
摘要
The singular boundary value problem we discuss is as follows: D0+αCu(t)=λq(t)f(t,u(t)),0<t<1,α1u(0)+α2u′(0)=a,β1u(1)+β2u′(1)=b,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{aligned}& {}^{\mathrm{C}}D_{0^{+}}^{\alpha}u(t)=\lambda q(t)f \bigl(t,u(t)\bigr),\quad 0< t< 1, \\& \alpha_{1}u(0)+\alpha_{2}u'(0)=a,\qquad \beta_{1}u(1)+\beta_{2}u'(1)=b, \end{aligned}$$ \end{document} where 1<α≤2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1<\alpha\leq2$\end{document}, λ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda>0$\end{document} is a parameter, D0+αC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${}^{\mathrm{C}}D_{0^{+}}^{\alpha}$\end{document} is the Caputo fractional derivative. We present the existence of positive solutions for a fractional boundary value problem modeled from the Thomas-Fermi equation subjected to Sturm-Liouville boundary conditions.
引用
收藏
相关论文
共 50 条
[31]   Existence of positive solutions for a neutral differential equation with positive and negative coefficients [J].
Ocalan, Ozkan .
APPLIED MATHEMATICS LETTERS, 2009, 22 (01) :84-90
[32]   Existence and uniqueness of positive solutions for fractional differential equations [J].
Tao Zhu .
Boundary Value Problems, 2019
[33]   EXISTENCE OF POSITIVE SOLUTIONS FOR SINGULAR FRACTIONAL DIFFERENTIAL EQUATIONS [J].
Qiu, Tingting ;
Bai, Zhanbing .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2008,
[34]   On the existence of positive solutions for fractional differential inclusions at resonance [J].
Hu, Lei .
SPRINGERPLUS, 2016, 5
[35]   Existence of Positive Solutions to a Fractional-Kirchhoff System [J].
Peng-fei Li ;
Jun-hui Xie ;
Dan Mu .
Acta Mathematicae Applicatae Sinica, English Series, 2024, 40 :225-240
[36]   Existence of Positive Solutions to a Fractional-Kirchhoff System [J].
Li, Peng-fei ;
Xie, Jun-hui ;
Mu, Dan .
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2024, 40 (01) :225-240
[37]   Existence and uniqueness of positive solutions for fractional differential equations [J].
Zhu, Tao .
BOUNDARY VALUE PROBLEMS, 2019, 2019 (1)
[38]   Existence of positive solutions for a system of generalized Lidstone problems [J].
Yang, Zhilin .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 60 (03) :501-510
[39]   On The Existence of Positive Solutions for Initial Value Problem to A Class of Fractional Differential Equation [J].
Li, Qiuping ;
Sun, Shurong .
PROCEEDINGS OF THE 7TH CONFERENCE ON BIOLOGICAL DYNAMIC SYSTEM AND STABILITY OF DIFFERENTIAL EQUATION, VOLS I AND II, 2010, :886-889
[40]   Necessary conditions for the existence of positive solutions to fractional boundary value problems at resonance [J].
Wang, Yongqing .
APPLIED MATHEMATICS LETTERS, 2019, 97 :34-40