Existence of positive solutions for a generalized and fractional ordered Thomas-Fermi theory of neutral atoms

被引:0
作者
Wenquan Feng
Shurong Sun
Ying Sun
机构
[1] University of Jinan,School of Mathematical Science
来源
Advances in Difference Equations | / 2015卷
关键词
fractional differential equation; singular boundary value problem; positive solution; Thomas-Fermi theory; 34A08; 34B16; 34B18;
D O I
暂无
中图分类号
学科分类号
摘要
The singular boundary value problem we discuss is as follows: D0+αCu(t)=λq(t)f(t,u(t)),0<t<1,α1u(0)+α2u′(0)=a,β1u(1)+β2u′(1)=b,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{aligned}& {}^{\mathrm{C}}D_{0^{+}}^{\alpha}u(t)=\lambda q(t)f \bigl(t,u(t)\bigr),\quad 0< t< 1, \\& \alpha_{1}u(0)+\alpha_{2}u'(0)=a,\qquad \beta_{1}u(1)+\beta_{2}u'(1)=b, \end{aligned}$$ \end{document} where 1<α≤2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1<\alpha\leq2$\end{document}, λ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda>0$\end{document} is a parameter, D0+αC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${}^{\mathrm{C}}D_{0^{+}}^{\alpha}$\end{document} is the Caputo fractional derivative. We present the existence of positive solutions for a fractional boundary value problem modeled from the Thomas-Fermi equation subjected to Sturm-Liouville boundary conditions.
引用
收藏
相关论文
共 50 条
[21]   Existence of positive solutions of nonlinear fractional delay differential equations [J].
Liao, Chunping ;
Ye, Haiping .
POSITIVITY, 2009, 13 (03) :601-609
[22]   Existence and nonexistence of positive solutions of a fractional thermostat model with a parameter [J].
Shen, Chunfang ;
Zhou, Hui ;
Yang, Liu .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (15) :4504-4511
[23]   Existence of positive solutions for a fractional compartment system [J].
Kong, Lingju ;
Wang, Min .
ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2021, (60) :1-9
[24]   Existence of Positive Solutions to the Fractional Laplacian With Positive Dirichlet Data [J].
Liu, Lijuan .
FILOMAT, 2020, 34 (06) :1795-1807
[25]   OSCILLATION AND EXISTENCE OF POSITIVE SOLUTIONS FOR NEUTRAL DIFFERENTIAL EQUATIONS [J].
申建华 .
ANNALSOFDIFFERENTIALEQUATIONS, 1996, (02) :191-200
[26]   Existence of positive solutions for eigenvalue problem of nonlinear fractional differential equations [J].
Han, Xiaoling ;
Gao, Hongliang .
ADVANCES IN DIFFERENCE EQUATIONS, 2012,
[27]   Existence of positive solutions for eigenvalue problem of nonlinear fractional differential equations [J].
Xiaoling Han ;
Hongliang Gao .
Advances in Difference Equations, 2012
[28]   Existence and multiplicity of positive solutions for singular fractional boundary value problems [J].
Bai, Zhanbing ;
Sun, Weichen .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 63 (09) :1369-1381
[29]   Existence and Boundary Behavior of Positive Solutions for a Semilinear Fractional Differential Equation [J].
Habib Mâagli ;
Majda Chaieb ;
Abdelwaheb Dhifli ;
Samia Zermani .
Mediterranean Journal of Mathematics, 2015, 12 :1265-1285
[30]   Existence and Boundary Behavior of Positive Solutions for a Semilinear Fractional Differential Equation [J].
Maagli, Habib ;
Chaieb, Majda ;
Dhifli, Abdelwaheb ;
Zermani, Samia .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2015, 12 (04) :1265-1285