Existence of positive solutions for a generalized and fractional ordered Thomas-Fermi theory of neutral atoms

被引:0
作者
Wenquan Feng
Shurong Sun
Ying Sun
机构
[1] University of Jinan,School of Mathematical Science
来源
Advances in Difference Equations | / 2015卷
关键词
fractional differential equation; singular boundary value problem; positive solution; Thomas-Fermi theory; 34A08; 34B16; 34B18;
D O I
暂无
中图分类号
学科分类号
摘要
The singular boundary value problem we discuss is as follows: D0+αCu(t)=λq(t)f(t,u(t)),0<t<1,α1u(0)+α2u′(0)=a,β1u(1)+β2u′(1)=b,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{aligned}& {}^{\mathrm{C}}D_{0^{+}}^{\alpha}u(t)=\lambda q(t)f \bigl(t,u(t)\bigr),\quad 0< t< 1, \\& \alpha_{1}u(0)+\alpha_{2}u'(0)=a,\qquad \beta_{1}u(1)+\beta_{2}u'(1)=b, \end{aligned}$$ \end{document} where 1<α≤2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1<\alpha\leq2$\end{document}, λ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda>0$\end{document} is a parameter, D0+αC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${}^{\mathrm{C}}D_{0^{+}}^{\alpha}$\end{document} is the Caputo fractional derivative. We present the existence of positive solutions for a fractional boundary value problem modeled from the Thomas-Fermi equation subjected to Sturm-Liouville boundary conditions.
引用
收藏
相关论文
共 50 条
  • [11] TOWARDS A RELATIVISTIC THOMAS-FERMI THEORY OF WHITE DWARFS AND NEUTRON STARS
    Rueda, Jorge A.
    Ruffini, Remo
    INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS, 2011, 20 : 141 - 148
  • [12] Scaling calculation of isoscalar giant resonances in relativistic Thomas-Fermi theory
    Patra, SK
    Viñas, X
    Centelles, M
    Del Estal, M
    NUCLEAR PHYSICS A, 2002, 703 (1-2) : 240 - 268
  • [13] Further results on existence of positive solutions of generalized fractional boundary value problems
    Hojjat Afshari
    Mohammed S. Abdo
    Jehad Alzabut
    Advances in Difference Equations, 2020
  • [14] Further results on existence of positive solutions of generalized fractional boundary value problems
    Afshari, Hojjat
    Abdo, Mohammed S.
    Alzabut, Jehad
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [15] Existence of positive solutions for the singular fractional differential equations
    Guo L.
    Zhang X.
    Zhang, X. (zhxq197508@163.com), 1600, Springer Verlag (44): : 215 - 228
  • [16] The existence of positive solutions for the singular fractional differential equation
    Jiang W.
    Huang X.
    Guo W.
    Zhang Q.
    Jiang, W. (weihuajiang@hebust.edu.cn), 1600, Springer Verlag (41): : 171 - 182
  • [17] Simple analysis of atomic reactivity: Thomas-Fermi theory with nonergodicity and gradient correction
    Eek, W
    Nordholm, S
    THEORETICAL CHEMISTRY ACCOUNTS, 2006, 115 (04) : 266 - 273
  • [18] Existence of positive solutions of nonlinear fractional delay differential equations
    Chunping Liao
    Haiping Ye
    Positivity, 2009, 13 : 601 - 609
  • [19] EXISTENCE OF POSITIVE SOLUTIONS FOR NONLINEAR FRACTIONAL PROBLEM ON THE HALF LINE
    Belarbi, S.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2015, 84 (01): : 1 - 12
  • [20] Existence of positive solutions of nonlinear fractional delay differential equations
    Liao, Chunping
    Ye, Haiping
    POSITIVITY, 2009, 13 (03) : 601 - 609