The singular boundary value problem we discuss is as follows:
D0+αCu(t)=λq(t)f(t,u(t)),0<t<1,α1u(0)+α2u′(0)=a,β1u(1)+β2u′(1)=b,\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document} $$\begin{aligned}& {}^{\mathrm{C}}D_{0^{+}}^{\alpha}u(t)=\lambda q(t)f \bigl(t,u(t)\bigr),\quad 0< t< 1, \\& \alpha_{1}u(0)+\alpha_{2}u'(0)=a,\qquad \beta_{1}u(1)+\beta_{2}u'(1)=b, \end{aligned}$$ \end{document} where 1<α≤2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$1<\alpha\leq2$\end{document}, λ>0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\lambda>0$\end{document} is a parameter, D0+αC\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${}^{\mathrm{C}}D_{0^{+}}^{\alpha}$\end{document} is the Caputo fractional derivative. We present the existence of positive solutions for a fractional boundary value problem modeled from the Thomas-Fermi equation subjected to Sturm-Liouville boundary conditions.