Complete-Subgraph-Transversal-Sets problem on bounded treewidth graphs

被引:0
作者
Ke Liu
Mei Lu
机构
[1] Tsinghua University,Department of Mathematical Sciences
来源
Journal of Combinatorial Optimization | 2021年 / 41卷
关键词
Treewidth; Complete subgraph; NP-complete problems; Algorithms;
D O I
暂无
中图分类号
学科分类号
摘要
Let G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=(V,E)$$\end{document} be a graph. A complete subgraph of G is a subgraph of pairwise adjacent vertices of V of size at least 2. Let ΦC(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi _C(G)$$\end{document} be the set of all complete subgraphs of G and Φ⊆ΦC(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi \subseteq {\Phi }_C(G)$$\end{document}. In this paper, we consider the Complete-Subgraph-Transversal-Set on Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi $$\end{document} problem and the L-Max Complete-Subgraph-Transversal-Set on Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi $$\end{document} problem. We give polynomial time algorithms to these two problems on graphs of bounded treewidth. At last, we show the connections between these two problems with some other NP-complete problems, for example Clique-Transversal-Set problem on graphs and Vertex-Cover problem on hypergraphs.
引用
收藏
页码:923 / 933
页数:10
相关论文
共 45 条
  • [1] Alber J(2002)Fixed parameter algorithms for dominating set and related problems on planar graphs Algorithmica 33 461-493
  • [2] Bodlaender HL(1987)Complexity of finding embeddings in a SIAM J Alg Discrete Methods 8 277-284
  • [3] Fernau H(1996)-tree Inf Process Lett 58 181-184
  • [4] Kloks T(1996)Clique transversal and clique independence on comparability graphs SIAM J Comput 25 1305-1317
  • [5] Niedermeier R(2005)A linear-time algorithm for finding tree-decompositions of small treewidth Math Program Ser B 105 233-250
  • [6] Arnborg S(1993)On balanced graphs SIAM J Discrete Math 6 24-29
  • [7] Corneil DG(1996)Algorithmic aspects of neighbourhood numbers Discrete Appl Math 66 189-203
  • [8] Proskurowski A(2002)Algorithmic aspects of the generalized clique-transversal problem on chordal graphs Ann Oper Res 116 71-77
  • [9] Balachandran V(1992)On clique-transversals and clique-independent sets Discrete Math 108 279-289
  • [10] Nagavamsi P(2009)Covering the cliques of graph with vertices J Combin Theory Ser B 99 218-228