Explicit Symplectic Algorithms For Time‐Transformed Hamiltonians

被引:0
作者
Seppo Mikkola
Kiyotaka Tanikawa
机构
[1] National Astronomical Observatory,
来源
Celestial Mechanics and Dynamical Astronomy | 1999年 / 74卷
关键词
symplectic integration; time‐transformation;
D O I
暂无
中图分类号
学科分类号
摘要
By Hamiltonian manipulation we demonstrate the existence of separable time‐transformed Hamiltonians in the extended phase‐space. Due to separability explicit symplectic methods are available for the solution of the equations of motion. If the simple leapfrog integrator is used, in case of two‐body motion, the method produces an exact Keplerian ellipse in which only the time‐coordinate has an error. Numerical tests show that even the rectilinear N‐body problem is feasible using only the leapfrog integrator. In practical terms the method cannot compete with regularized codes, but may provide new directions for studies of symplectic N‐body integration.
引用
收藏
页码:287 / 295
页数:8
相关论文
共 15 条
  • [1] Kinoshita H.(1991)Symplectic integrators and their application in dynamical astronomy Celest. Mech. Dyn. Astron. 50 59-71
  • [2] Yoshida H.(1993)An implementation of Celest. Mech. Dyn. Astron. 57 439-459
  • [3] Nakai H.(1997)-body chain regularization Celest. Mech. Dyn. Astron. 67 145-165
  • [4] Mikkola S.(1999)Practical symplectic methods with time transformation for the few-body problem Astron J. 117 1087-1102
  • [5] Aarseth S. J.(1992)Dynamical chaos in the Wisdom-Holman integrator: Origins and solution Astron. J. 104 1633-1640
  • [6] Mikkola S.(1967)Symplectic integrators for solar system dynamics Astron. J. 72 876-1538
  • [7] Rauch K. P.(1991)Complete solution of a general problem of three bodies Astron. J. 102 1520-268
  • [8] Holman M.(1990)Symplectic maps for the Phys. Lett. A 150 262-undefined
  • [9] Saha P.(undefined)-body problem undefined undefined undefined-undefined
  • [10] Tremaine S. D.(undefined)Construction of higher order symplectic integrators undefined undefined undefined-undefined