Eigenvalues of K-invariant Toeplitz Operators on Bounded Symmetric Domains

被引:0
作者
Harald Upmeier
机构
[1] University of Marburg,Department of Mathematics
来源
Integral Equations and Operator Theory | 2021年 / 93卷
关键词
Toeplitz operators; Symmetric domains; Eigenvalues; Dimension formula; Primary 39B82; Secondary 32025;
D O I
暂无
中图分类号
学科分类号
摘要
We determine the eigenvalues of certain “fundamental” K-invariant Toeplitz type operators on weighted Bergman spaces over bounded symmetric domains D=G/K,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D=G/K,$$\end{document} for the irreducible K-types indexed by all partitions of length r=rank(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r={\mathrm {rank}}(D)$$\end{document}.
引用
收藏
相关论文
共 13 条
[1]  
Arazy J(1995)A survey of invariant Hilbert spaces of analytic functions on bounded symmetric domains Contemp. Math. 185 7-65
[2]  
Arazy J(2003)Homogeneous multiplication operators on bounded symmetric domains J. Funct. Anal. 202 44-66
[3]  
Zhang G(1975)Quantization in complex symmetric spaces Math. USSR-Izv. 9 341-379
[4]  
Berezin F(1990)Function spaces and reproducing kernels on bounded symmetric domains J. Funct. Anal. 88 64-89
[5]  
Faraut J(1997)The Selberg–Jack symmetric functions Adv. Math. 130 33-102
[6]  
Korányi A(1986)Noyau de Szegö, C.R. Acad. Sci. Paris 303 1-4
[7]  
Kadell K(1987)-types et algèbres de Jordan Invent. Math. 89 375-393
[8]  
Lassalle M(1969)Algèbres de Jordan et ensemble de Wallach Invent. Math. 8 61-80
[9]  
Lassalle M(1989)Die Randwerte holomorpher Funktionen auf hermitesch symmetrischen Räumen Adv. Math. 77 76-115
[10]  
Schmid W(1986)Some combinatorial properties of the Jack symmetric functions Am. J. Math. 108 1-25