Fuzzy Tracking Control for Discrete-Time Nonlinear Network Systems with Privacy Protection and Dynamic Quantization

被引:0
作者
Mingquan Li
Xiaoheng Chang
机构
[1] Bohai University,College of Control Science and Engineering
来源
International Journal of Fuzzy Systems | 2023年 / 25卷
关键词
T–S fuzzy control; Privacy preservation; Tracking control; Output feedback control; Networked control systems;
D O I
暂无
中图分类号
学科分类号
摘要
This paper investigates the problem of H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}_{\infty }$$\end{document} performance output feedback tracking control of a nonlinear network control system with quantization effects in a privacy protection state. The nonlinear network system under study are represented by a Takagi–Sugeno fuzzy model. Dynamic quantization of the reference model and controlled object output signals are performed to reduce the load on the communication network. A function that converges gradually to the true value over time is used to protect the privacy of the reference model from eavesdroppers, and a tracking controller is designed to ensure that the system is asymptotically stable and has a given H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}_{\infty }$$\end{document} performance. The sufficient conditions for the tracking controller are given in the form of linear matrix inequalities. Finally, the validity of the proposed method is verified using a nonlinear mass-spring-damped system.
引用
收藏
页码:1227 / 1238
页数:11
相关论文
共 117 条
[11]  
Hu S(2020)Robust Int. J. Robust Nonlinear Control 30 2402-2311
[12]  
Yue D(2022) filtering for vehicle sideslip angle with quantization and data dropouts IEEE Trans. Fuzzy Syst. 30 2300-1899
[13]  
Cheng Z(2022)Nonfragile fault-tolerant control of suspension systems subject to input quantization and actuator fault IEEE Trans. Fuzzy Syst. 30 1889-1938
[14]  
Tian E(2021)Quantized guaranteed cost output feedback control for nonlinear networked control systems and its applications IEEE Trans. Fuzzy Syst. 30 1929-3458
[15]  
Xie X(2022)Adaptive fuzzy SOSM controller design with output constraints IEEE Trans. Fuzzy Syst. 61 3448-1517
[16]  
Chen X(2021)Fuzzy energy-to-peak filtering for continuous-time nonlinear singular system IEEE Trans. Fuzzy Syst. 29 1507-2475
[17]  
Li Z(2014)Observer-based sliding mode control for networked fuzzy singularly perturbed systems under weighted try-once-discard protocol IEEE Trans. Ind. Electron. 30 2466-22
[18]  
Pan Y(2020)Fuzzy lyapunov-based model predictive sliding mode control of nonlinear systems: an ellipsoid recursive feasibility approach IEEE Trans. Fuzzy Syst. 36 542-4049
[19]  
Ma J(2021)Nonfragile IIEEE Trans. Fuzzy Syst. 18 1-3692
[20]  
Cheng J(1956) filter design for T-S fuzzy systems in standard form Ann. Math. Stud. 64 4035-2426