High-throughput format for the phenotyping of fungi on solid substrates

被引:0
|
作者
David Cánovas
Lena Studt
Ana T. Marcos
Joseph Strauss
机构
[1] BOKU University of Natural Resources and Life Science,Division of Microbial Genetics and Pathogen Interaction, Department of Applied Genetics and Cell Biology
[2] Campus Tulln,Departamento de Genética
[3] Universidad de Sevilla,Research Platform Bioactive Microbial Metabolites
[4] BOKU University and University of Veterinary Medicine Vienna,undefined
[5] Campus Tulln,undefined
[6] Instituto para el Estudio de la Reproducción Humana (Inebir). Avda de la Cruz Roja 1,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Filamentous fungi naturally grow on solid surfaces, yet most genetic and biochemical analyses are still performed in liquid cultures. Here, we report a multiplexing platform using high-throughput photometric continuous reading that allows parallel quantification of hyphal growth and reporter gene expression directly on solid medium, thereby mimicking natural environmental conditions. Using this system, we have quantified fungal growth and expression of secondary metabolite GFP-based reporter genes in saprophytic Aspergillus and phytopathogenic Fusarium species in response to different nutrients, stress conditions and epigenetic modifiers. With this method, we provide not only novel insights into the characteristic of fungal growth but also into the metabolic and time-dependent regulation of secondary metabolite gene expression.
引用
收藏
相关论文
共 50 条
  • [41] High-throughput Phenotyping of Lung Cancer Somatic Mutations
    Berger, Alice H.
    Brooks, Angela N.
    Wu, Xiaoyun
    Shrestha, Yashaswi
    Chouinard, Candace
    Piccioni, Federica
    Bagul, Mukta
    Kamburov, Atanas
    Imielinski, Marcin
    Hogstrom, Larson
    Zhu, Cong
    Yang, Xiaoping
    Pantel, Sasha
    Sakai, Ryo
    Watson, Jacqueline
    Kaplan, Nathan
    Campbell, Joshua D.
    Singh, Shantanu
    Root, David E.
    Narayan, Rajiv
    Natoli, Ted
    Lahr, David L.
    Tirosh, Itay
    Tamayo, Pablo
    Getz, Gad
    Wong, Bang
    Doench, John
    Subramanian, Aravind
    Golub, Todd R.
    Meyerson, Matthew
    Boehm, Jesse S.
    CANCER CELL, 2016, 30 (02) : 214 - 228
  • [42] GiNA, an Efficient and High-Throughput Software for Horticultural Phenotyping
    Diaz-Garcia, Luis
    Covarrubias-Pazaran, Giovanny
    Schlautman, Brandon
    Zalapa, Juan
    PLOS ONE, 2016, 11 (08):
  • [43] High-throughput phenotyping for crop improvement in the genomics era
    Mir, Reyazul Rouf
    Reynolds, Mathew
    Pinto, Francisco
    Khan, Mohd Anwar
    Bhat, Mohd Ashraf
    PLANT SCIENCE, 2019, 282 : 60 - 72
  • [44] Mouse Eye Enucleation for Remote High-throughput Phenotyping
    Mahajan, Vinit B.
    Skeie, Jessica M.
    Assefnia, Amir H.
    Mahajan, MaryAnn
    Tsang, Stephen H.
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2011, (57):
  • [45] Leveraging Image Analysis for High-Throughput Plant Phenotyping
    Choudhury, Sruti Das
    Samal, Ashok
    Awada, Tala
    FRONTIERS IN PLANT SCIENCE, 2019, 10
  • [46] A bioimage informatics platform for high-throughput embryo phenotyping
    Brown, James M.
    Horner, Neil R.
    Lawson, Thomas N.
    Fiegel, Tanja
    Greenaway, Simon
    Morgan, Hugh
    Ring, Natalie
    Santos, Luis
    Sneddon, Duncan
    Teboul, Lydia
    Vibert, Jennifer
    Yaikhom, Gagarine
    Westerberg, Henrik
    Mallon, Ann-Marie
    BRIEFINGS IN BIOINFORMATICS, 2018, 19 (01) : 41 - 51
  • [47] High-throughput phenotyping of seminal root traits in wheat
    Cecile AI Richard
    Lee T Hickey
    Susan Fletcher
    Raeleen Jennings
    Karine Chenu
    Jack T Christopher
    Plant Methods, 11
  • [48] Fenomica: A Computer Vision System for High-Throughput Phenotyping
    dos Santos, Marcos Roberto
    Madalozzo, Guilherme Afonso
    Cunha Fernandes, Jose Mauricio
    Rieder, Rafael
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND ENVIRONMENTAL INFORMATION SYSTEMS, 2020, 11 (01) : 1 - 22
  • [49] Enabling Biotech Discovery Using High-throughput Phenotyping
    Murphy, K.
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL, 2024, 60 (01) : S79 - S80
  • [50] Deformability cytometry for high-throughput cell mechanical phenotyping
    Xiang, Nan
    Ni, Zhonghua
    SCIENCE BULLETIN, 2020, 65 (24) : 2045 - 2047