A generalization of domains of constant width

被引:0
作者
Zhang D. [1 ,2 ]
机构
[1] Department of Mathematics, Tongji University, Shanghai
[2] College of mathematics and statistics, Hexi University, Zhangye
来源
Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry | 2016年 / 57卷 / 1期
基金
中国国家自然科学基金;
关键词
Constant width; Convex domain; Diameter; Equiangular polygon; Higher order width; Perimeter;
D O I
10.1007/s13366-015-0252-8
中图分类号
学科分类号
摘要
Recently, Ou and Pan introduced the higher order width functions of convex domains, and posed a generalization of the Blaschke–Lebesgue problem: among all convex domains having constant (Formula presented.) -order width, which has the least possible area. In this paper, we continue to study convex domains having constant (Formula presented.) -order width and obtain some characterizations of this class of sets, which are slightly different from those of constant width convex domains. © 2015, The Managing Editors.
引用
收藏
页码:259 / 270
页数:11
相关论文
共 9 条
[1]  
Abbound E., Viviani’s theorem and its extensions, Coll. Math. J., 41, 3, pp. 203-211, (2010)
[2]  
Anciaux H., Guifoyle B., On the three-dimensional Blaschke–Lebesgue problem, Proc. Am. Math. Soc., 5, pp. 1831-1839, (2011)
[3]  
Howard R., Convex bodies of constant width and constant brightness, Adv. Math., 204, 1, pp. 241-261, (2006)
[4]  
Hsiung C.C., A first course in differential geometry, Pure and Applied Mathematics, pp. 115-116, (1981)
[5]  
Kupitz Y.S., Martini H., On the isoperimetic inequalities for Reuleaux polygons, J. Geom., 68, pp. 171-191, (2000)
[6]  
Lachand-Robert T., Oudet E., Bodies of constant width in arbitrary dimension, Math. Nachr., 280, 7, pp. 740-750, (2007)
[7]  
Martini H., Mustafaev Z., A new construction of curves of constant width, Comput. Aided Geom. Des., 25, 9, pp. 751-755, (2008)
[8]  
Ou K., Pan S.L., Some remarks about closed convex curves, Pac. J. Math., 2, pp. 393-401, (2010)
[9]  
Yaglom I.M., Boltyanski V.G., Convex Figures, (1961)