Traveling Wave Solutions for a Class of Discrete Diffusive SIR Epidemic Model

被引:0
|
作者
Ran Zhang
Jinliang Wang
Shengqiang Liu
机构
[1] Harbin Institute of Technology,School of Mathematics
[2] Heilongjiang University,School of Mathematical Sciences
[3] Tiangong University,School of Mathematical Sciences
来源
Journal of Nonlinear Science | 2021年 / 31卷
关键词
Lattice dynamical system; Schauder’s fixed point theorem; Traveling wave solutions; Diffusive epidemic model; Lyapunov functional; 35C07; 35K57; 92D30;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with the conditions of existence and nonexistence of traveling wave solutions (TWS) for a class of discrete diffusive epidemic model. We find that the existence of TWS is determined by the so-called basic reproduction number and the critical wave speed: When the basic reproduction number R0>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {R}_0>1$$\end{document}, there exists a critical wave speed c∗>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c^*>0$$\end{document}, such that for each c≥c∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c \ge c^*$$\end{document} the system admits a nontrivial TWS and for c<c∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c<c^*$$\end{document} there exists no nontrivial TWS for the system. In addition, the boundary asymptotic behavior of TWS is obtained by constructing a suitable Lyapunov functional and employing Lebesgue dominated convergence theorem. Finally, we apply our results to two discrete diffusive epidemic models to verify the existence and nonexistence of TWS.
引用
收藏
相关论文
共 50 条
  • [1] Traveling Wave Solutions for a Class of Discrete Diffusive SIR Epidemic Model
    Zhang, Ran
    Wang, Jinliang
    Liu, Shengqiang
    JOURNAL OF NONLINEAR SCIENCE, 2021, 31 (01)
  • [2] Traveling wave solutions for a discrete diffusive epidemic model with asymptomatic carriers
    Zhang, Ran
    Li, Dan
    Sun, Hongquan
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2023, 16 (02)
  • [3] TRAVELING WAVE SOLUTIONS FOR A DISCRETE DIFFUSIVE EPIDEMIC MODEL
    Fu, Sheng-Chen
    Guo, Jong-Shenq
    Wu, Chin-Chin
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2016, 17 (09) : 1739 - 1751
  • [4] ON THE ASYMPTOTIC BEHAVIOUR OF TRAVELING WAVE SOLUTION FOR A DISCRETE DIFFUSIVE EPIDEMIC MODEL
    Zhang, Ran
    Liu, Shengqiang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (02): : 1197 - 1204
  • [5] Traveling wave solutions for a delayed diffusive SIR epidemic model with nonlinear incidence rate and external supplies
    Zhou, Kai
    Han, Maoan
    Wang, Qiru
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (07) : 2772 - 2783
  • [6] Traveling waves of a diffusive SIR epidemic model with a class of nonlinear incidence rates and distributed delay
    Bai, Zhenguo
    Zhang, Shengli
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 22 (1-3) : 1370 - 1381
  • [7] MONOTONE TRAVELING WAVE SOLUTIONS FOR A DISCRETE DIFFUSIVE VECTOR-BORNE EPIDEMIC MODEL WITHOUT MONOTONICITY
    Zhang, Guo-Bao
    Dang, Jiao
    Tian, Ge
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2025, 30 (01): : 148 - 170
  • [8] Traveling Wave Solutions of a Diffusive SEIR Epidemic Model with Nonlinear Incidence Rate
    Zhao, Lin
    Zhang, Liang
    Huo, Haifeng
    TAIWANESE JOURNAL OF MATHEMATICS, 2019, 23 (04): : 951 - 980
  • [9] WAVE PROPAGATION FOR A DISCRETE DIFFUSIVE VACCINATION EPIDEMIC MODEL WITH BILINEAR INCIDENCE
    Zhang, Ran
    Liu, Shengqiang
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2023, 13 (02): : 715 - 733
  • [10] Stability of traveling wave solutions for a spatially discrete SIS epidemic model
    Hsu, Cheng-Hsiung
    Lin, Jian-Jhong
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (02):