Rigid Reflections of Rank 3 Coxeter Groups and Reduced Roots of Rank 2 Kac–Moody Algebras

被引:0
作者
Kyu-Hwan Lee
Jeongwoo Yu
机构
[1] University of Connecticut,Department of Mathematics
[2] Seoul National University,Department of Mathematical Sciences
来源
Algebras and Representation Theory | 2023年 / 26卷
关键词
Coxeter group; Kac–Moody algebra; Rigid reflection; Primary 20F55; 17B67; Secondary 16G20;
D O I
暂无
中图分类号
学科分类号
摘要
In a recent paper by K.-H. Lee and K. Lee, rigid reflections are defined for any Coxeter group via non-self-intersecting curves on a Riemann surface with labeled curves. When the Coxeter group arises from an acyclic quiver, the rigid reflections are related to the rigid representations of the quiver. For a family of rank 3 Coxeter groups, it was conjectured in the same paper that there is a natural bijection from the set of reduced positive roots of a symmetric rank 2 Kac–Moody algebra onto the set of rigid reflections of the corresponding rank 3 Coxeter group. In this paper, we prove the conjecture.
引用
收藏
页码:1465 / 1496
页数:31
相关论文
共 31 条
  • [1] Baumeister B(2014)A note on the transitive Hurwitz action on decompositions of parabolic Coxeter elements Proc. Amer. Math. Soc. Ser. B 1 149-154
  • [2] Dyer M(1978)The diamond lemma for ring theory Adv. Math. 29 178-218
  • [3] Stump C(1976)Imbedding into simple associative algebras Algebra Logic 15 117-142
  • [4] Wegener P(2001)Gröbner–Shirshov bases for Coxeter groups Comm. Algebra 29 4305-4319
  • [5] Bergman GM(2006)From triangulated categories to cluster algebras II Ann. Sci. École Norm. Sup. (4) 39 983-1009
  • [6] Bokut LA(2018)Acyclic cluster algebras, reflections groups, and curves on a punctured disc Adv. Math. 340 855-882
  • [7] Bokut LA(2016)A categorification of non-crossing partitions J. Eur. Math. Soc. 18 2273-2313
  • [8] Shiao L-S(2010)Exceptional sequences and clusters J. Algebra 323 2183-2202
  • [9] Caldero P(2000)Gröbner–Shirshov bases for representation theory J. Korean Math. Soc. 37 55-72
  • [10] Keller B(2000)Gröbner–Shirshov bases for irreducible sln+ 1-modules J. Algebra 232 1-20