Signed Domination Number of Some Graphs

被引:0
作者
Saeid Alikhani
Fatemeh Ramezani
机构
[1] Yazd University,Department of Mathematics
来源
Iranian Journal of Science and Technology, Transactions A: Science | 2022年 / 46卷
关键词
Signed domination number; Forcing signed domination number; Cartesian product; Direct product; Join graph;
D O I
暂无
中图分类号
学科分类号
摘要
Let G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=(V,E)$$\end{document} be a simple graph. A function f:V⟶{-1,1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:V\longrightarrow \{-1,1\}$$\end{document} is a signed dominating function if for every vertex v∈V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v \in V$$\end{document}, the closed neighborhood of v contains more vertices with function value 1 than with -1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-1$$\end{document}. The weight of a function f is ω(f)=∑v∈Vf(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega (f)= \sum _{v \in V} f(v)$$\end{document}. The signed domination number of G, γs(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _s(G)$$\end{document}, is the minimum weight of a signed dominating function on G. A signed dominating function of weight γs(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _s(G)$$\end{document} is called γs(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _s(G)$$\end{document}-function. A γs(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _s(G)$$\end{document}-function can also be represented by a set of ordered pairs Sf={(v,f(v)):v∈V}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_f=\{(v, f(v)) :v\in V\}$$\end{document}. A subset T of Sf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_f$$\end{document} is called a forcing subset of Sf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_f$$\end{document} if Sf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_f$$\end{document} is the unique extension of T to a γs(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _s(G)$$\end{document}-function. The forcing signed domination number of Sf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_f$$\end{document}f(Sf,γs)=min{|T|:T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(S_f, \gamma _s) = {\rm min} \{|T|: T$$\end{document} is a forcing subset of Sf}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_f\}$$\end{document} and the forcing signed domination number of G, f(G,γs)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(G,\gamma _s)$$\end{document}, is defined by f(G,γs)=min{f(Sf,γs):Sf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(G,\gamma _s) = {\rm min} \{f(S_f,\gamma _s): S_f$$\end{document} is a γs(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _s(G)$$\end{document}-function}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\}$$\end{document}. In this paper, we deal with the signed domination number of several classes of graph. Also the forcing signed domination number of some graphs are determined.
引用
收藏
页码:291 / 296
页数:5
相关论文
共 13 条
  • [1] Favaron O(1996)Signed domination in regular graphs Discrete Math 158 287-293
  • [2] Füredi Z(1999)Signed domination in regular graphs and set-systems J Combin Theory Ser B 76 223-239
  • [3] Mubayi D(2004)Signed domination numbers of a graph and its complement Discrete Math 283 87-92
  • [4] Haas R(1996)Inequalities relating domination parameters in cubic graphs Discrete Math 158 87-98
  • [5] Wexler TB(2007)Forcing signed domination numbers in graphs Matematički Vesnik 59 171-179
  • [6] Henning MA(2016)On the domination and signed domination numbers of zero-divisor graph Electron J Gr Theory Appl 4 148-156
  • [7] Slater PJ(2005)Signed domatic number of a graph Discrete Appl Math 150 261-267
  • [8] Sheikholeslami SM(2006)Signed and minus domination in bipartite graphs Czechoslovak Math J 56 587-590
  • [9] Vatandoost E(undefined)undefined undefined undefined undefined-undefined
  • [10] Ramezani F(undefined)undefined undefined undefined undefined-undefined