On the Uniqueness of Convex Central Configurations in the Planar \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4$$\end{document}-Body Problem

被引:0
作者
Shanzhong Sun
Zhifu Xie
Peng You
机构
[1] Department of Mathematics and Academy for Multidisciplinary Studies,
[2] Capital Normal University,undefined
[3] School of Mathematics and Natural Science,undefined
[4] The University of Southern Mississippi,undefined
[5] School of Mathematics and Statistics,undefined
[6] Hebei University of Economics and Business,undefined
关键词
central configuration; convex central configuration; uniqueness; -body problem; Krawczyk operator; implicit function theorem;
D O I
10.1134/S1560354723520076
中图分类号
学科分类号
摘要
In this paper, we provide a rigorous computer-assisted proof (CAP) of the conjecture that in the planar four-body problem there exists a unique convex central configuration for any four fixed positive masses in a given order belonging to a closed domain in the mass space. The proof employs the Krawczyk operator and the implicit function theorem (IFT). Notably, we demonstrate that the implicit function theorem can be combined with interval analysis, enabling us to estimate the size of the region where the implicit function exists and extend our findings from one mass point to its neighborhood.
引用
收藏
页码:512 / 532
页数:20
相关论文
共 49 条
[21]  
Cors J. M.(2021)On Central Configurations Nonlinearity 34 165-184
[22]  
Roberts G. E.(2010)Central Configurations in Planar J. Math. Anal. Appl. 363 7-15
[23]  
Corbera M.(1978)-Body Problem with Equal Masses for Celestial Mech. 18 185-190
[24]  
Cors J. M.(1998)Four-Body Central Configurations with One Pair of Opposite Sides Parallel Math. Intelligencer 20 665-672
[25]  
Roberts G. E.(2004)On the Uniqueness of Co-Circular Four Body Central Configurations J. Differential Equations 200 undefined-undefined
[26]  
Cors J. M.(2012)On the Uniqueness of Trapezoidal Four-Body Central Configurations Proc. Roy. Soc. Edinburgh Sect. A 142 undefined-undefined
[27]  
Roberts G. E.(undefined)Classification of Four-Body Central Configurations with Three Equal Masses undefined undefined undefined-undefined
[28]  
es A. C., Llibre, J., and Mello, L. F.(undefined)Relative Equilibrium Solutions in the Four-Body Problem undefined undefined undefined-undefined
[29]  
Hampton M.(undefined)Mathematical Problems for the Next Century undefined undefined undefined-undefined
[30]  
Moeckel R.(undefined)Convex Central Configurations for the undefined undefined undefined-undefined