On the Uniqueness of Convex Central Configurations in the Planar \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4$$\end{document}-Body Problem

被引:0
作者
Shanzhong Sun
Zhifu Xie
Peng You
机构
[1] Department of Mathematics and Academy for Multidisciplinary Studies,
[2] Capital Normal University,undefined
[3] School of Mathematics and Natural Science,undefined
[4] The University of Southern Mississippi,undefined
[5] School of Mathematics and Statistics,undefined
[6] Hebei University of Economics and Business,undefined
关键词
central configuration; convex central configuration; uniqueness; -body problem; Krawczyk operator; implicit function theorem;
D O I
10.1134/S1560354723520076
中图分类号
学科分类号
摘要
In this paper, we provide a rigorous computer-assisted proof (CAP) of the conjecture that in the planar four-body problem there exists a unique convex central configuration for any four fixed positive masses in a given order belonging to a closed domain in the mass space. The proof employs the Krawczyk operator and the implicit function theorem (IFT). Notably, we demonstrate that the implicit function theorem can be combined with interval analysis, enabling us to estimate the size of the region where the implicit function exists and extend our findings from one mass point to its neighborhood.
引用
收藏
页码:512 / 532
页数:20
相关论文
共 49 条
[1]  
Albouy A.(1995)Symétrie de configurations centrales de quatre corps C. R. Acad. Sci. Paris Ser. 1 Math. 320 217-220
[2]  
Albouy A.(2012)Some Open Problems on the Classical Celestial Mech. Dynam. Astronom. 113 369-375
[3]  
Cabral H. E.(2008)-Body Problem Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 464 1355-1365
[4]  
Santos A. A.(2012)Symmetry of Planar Four-Body Convex Central Configurations Ann. of Math. (2) 176 535-588
[5]  
Albouy A.(2000)Finiteness of Central Configurations of Five Bodies in the Plane J. Comput. Appl. Math. 121 421-464
[6]  
Fu Y.(2019)Interval Analysis: Theory and Applications. Numerical Analysis in the 20th Century: Vol. 1. Approximation Theory Appl. Math. Comput. 346 127-142
[7]  
Sun S.(2015)Trapezoid Central Configurations SIAM J. Math. Anal. 47 1377-1404
[8]  
Albouy A.(2018)Bifurcation of Relative Equilibria of the Qual. Theory Dyn. Syst. 17 367-374
[9]  
Kaloshin V.(2019)-Body Problem Celestial Mech. Dynam. Astronom. 131 343-370
[10]  
Alefeld G.(2012)A Four-Body Convex Central Configuration with Perpendicular Diagonals Is Necessarily a Kite Nonlinearity 25 303-320