Adoption and realization of deep learning in network traffic anomaly detection device design

被引:0
|
作者
Guanglu Wei
Zhonghua Wang
机构
[1] PLA Strategic Support Force Information Engineering University,
[2] National Computer Network Emergency Response Technical Team Coordination Center of China,undefined
来源
Soft Computing | 2021年 / 25卷
关键词
Deep learning; CNN; Circulatory neural network; Network traffic; Anomaly detection;
D O I
暂无
中图分类号
学科分类号
摘要
In order to study the application of deep learning in the design of network traffic anomaly detection device, aiming at two common problems in the field of network anomaly detection: characteristic dependence and high false positive rate, the convolutional neural network (CNN) is combined with recurrent neural network (RNN) to propose the network anomaly detection method based on hierarchical spatiotemporal feature learning (HAST-NAD) based on deep learning. It automatically learns the traffic characteristics and improves the network traffic anomaly detection efficiency. First, the CNN is used to learn the spatial feature algorithm of data, and long-short term memory of RNN is used to learn the temporal feature algorithm of data. Then the two original data sets DARPA1998 and ISCX2012 are preprocessed. The accuracy, detection rate, and false positive rate of normal traffic and Dos, Probe, U2R, and R2L attack traffic are compared in DARPA1998 data set. The accuracy, detection rate, and false positive rate of normal traffic and Brute force SSH, DDoS, HttpDoS, and buffering attack traffic are compared in ISCX2012 data set. Finally, it is compared with other network traffic anomaly detection methods. The results show that when the network flow length is 800, the model shows good performance on the DARPA1998 data set (accuracy, detection rate and false positive rate are 98.68%, 97.78%, and 0.07%, respectively). When the network flow length is 600, the model performs better on the ISCX2012 dataset (accuracy, detection rate and false positive rate are 99.69%, 96.91%, and 0.22%, respectively). At the same time, when the packet length is 100 and the number of packets is 6, the model shows high precision, high detection rate, and low false positive rate on ISCX2012 data set. In the same data set, the temporal feature algorithm has better performance and lower false positive rate than the spatial feature algorithm. Compared with other network traffic anomaly detection methods, HAST-NAD has better comprehensive test results. In conclusion, the combination of CNN and RNN can better realize abnormal detection of network traffic, which has practical application and theoretical value.
引用
收藏
页码:1147 / 1158
页数:11
相关论文
共 50 条
  • [21] Evaluation of feature learning for anomaly detection in network traffic
    Daniel Pérez
    Serafín Alonso
    Antonio Morán
    Miguel A. Prada
    Juan José Fuertes
    Manuel Domínguez
    Evolving Systems, 2021, 12 : 79 - 90
  • [22] DOC-IDS: A Deep Learning-Based Method for Feature Extraction and Anomaly Detection in Network Traffic
    Yoshimura, Naoto
    Kuzuno, Hiroki
    Shiraishi, Yoshiaki
    Morii, Masakatu
    SENSORS, 2022, 22 (12)
  • [23] Deep Learning for Anomaly Detection
    Wang, Ruoying
    Nie, Kexin
    Chang, Yen-Jung
    Gong, Xinwei
    Wang, Tie
    Yang, Yang
    Long, Bo
    KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 3569 - 3570
  • [24] Deep Learning for Anomaly Detection
    Wang, Ruoying
    Nie, Kexin
    Wang, Tie
    Yang, Yang
    Long, Bo
    PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING (WSDM '20), 2020, : 894 - 896
  • [25] Improving Traffic Surveillance: Deep Learning Approach for Road Anomaly Detection in Videos
    Natha, Sarfaraz
    Arif, Muhammad
    Jamil, Syed Shahryar
    Jokhio, Fareed Ahmed
    Syed, Muslim Jameel
    2024 IEEE 3RD INTERNATIONAL CONFERENCE ON COMPUTING AND MACHINE INTELLIGENCE, ICMI 2024, 2024,
  • [26] A Novel Approach of Traffic Congestion and Anomaly Detection with Prediction Using Deep Learning
    Ben Slimane, Jihane
    Ben Ammar, Mohamed
    JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (03) : 2150 - 2159
  • [27] Deep and Machine Learning Approaches for Anomaly-Based Intrusion Detection of Imbalanced Network Traffic
    Abdulhammed, Razan
    Faezipour, Miad
    Abuzneid, Abdelshakour
    AbuMallouh, Arafat
    IEEE SENSORS LETTERS, 2019, 3 (01)
  • [28] DeepNet: A Deep Learning Architecture for Network-Based Anomaly Detection
    Zabihi, Javad
    Janeja, Vandana
    ON THE MOVE TO MEANINGFUL INTERNET SYSTEMS, OTM 2019, 2020, 11878 : 229 - 238
  • [29] Vulnerability of Deep Learning Model based Anomaly Detection in Vehicle Network
    Wang, Yi
    Chia, Dan Wei Ming
    Ha, Yajun
    2020 IEEE 63RD INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS (MWSCAS), 2020, : 293 - 296
  • [30] State of the Art Literature Review on Network Anomaly Detection with Deep Learning
    Bodstrom, Tero
    Hamalainen, Timo
    INTERNET OF THINGS, SMART SPACES, AND NEXT GENERATION NETWORKS AND SYSTEMS, NEW2AN 2018, 2018, 11118 : 64 - 76