Lorentz Manifolds with the Three Largest Degrees of Symmetry

被引:0
作者
Vic Patrangenaru
机构
[1] Texas Tech University,Department of Mathematics and Statistics
来源
Geometriae Dedicata | 2003年 / 102卷
关键词
Cartan triple; Lorentz degree of symmetry; Lorentz stratum; ∈-spaces;
D O I
暂无
中图分类号
学科分类号
摘要
We show that if a Lorentz manifold (M, g) has a sufficiently large group of isometries and if, in addition, this group has no null orbits, then (M, g) is homogeneous. A list of Lorentz manifolds with the three largest groups of isometries is given.
引用
收藏
页码:25 / 33
页数:8
相关论文
共 12 条
[1]  
Cahen M.(1990)Lorentz manifolds modelled on a Lorentz symmetric space J. Geom. Phys. 7 571-581
[2]  
Leroy J.(1980)On sectional curvature of indefinite metrics Math. Ann. 247 279-282
[3]  
Parker M.(1963)Riemannian spaces of the first three lacunary types in the geometric sense Dokl. Akad. Nauk SSSR 150 730-732
[4]  
Tricerri F.(1956)Groups of motions of order 1/2 Nederl. Akad. Wetensch. Proc. Ser. A. 59 = Indag. Math. 18 313-318
[5]  
Vanhecke L.(1955)( J. Math. Soc. Japan 7 371-388
[6]  
Dajczer M.(1995)-1) + 1 in Riemannian J. Geom. Phys. 171 59-72
[7]  
Nomizu K.(1998)-spaces J. Geom. Phys. 26 227-246
[8]  
Egorov I. P.(undefined)On n-dimensional homogeneous spaces of Lie groups of dimension greater than undefined undefined undefined-undefined
[9]  
Kuiper N. H.(undefined)( undefined undefined undefined-undefined
[10]  
Obata M.(undefined)— 1)/2 undefined undefined undefined-undefined