Comparison of the results of a mean-field mixed quantum/classical method with full quantum predictions for nonadiabatic dynamics: application to the ππ∗/nπ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi \pi ^*/n\pi ^*$$\end{document} decay of thymine

被引:0
作者
Yanli Liu
Javier Cerezo
Na Lin
Xian Zhao
Roberto Improta
Fabrizio Santoro
机构
[1] Ludong University,School of Physics and Optoelectronics Engineering
[2] Universidad de Murcia,Departamento de Química Física
[3] Shandong University,State Key Laboratory of Crystal Materials
[4] CNR-Consiglio Nazionale delle Ricerche,LIDYL, CEA, CNRS
[5] Istituto di Biostrutture e Bioimmagini (IBB-CNR),undefined
[6] Université Paris-Saclay,undefined
[7] CNR-Consiglio Nazionale delle Ricerche,undefined
[8] Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR),undefined
[9] UOS di Pisa,undefined
关键词
Internal conversion; Quantum dynamics; Reduced-dimensionality models; Mixed quantum/classical methods; Linear vibronic coupling model;
D O I
10.1007/s00214-018-2218-z
中图分类号
学科分类号
摘要
We consider the nonadiabatic dynamics of internal conversions (ICs) in systems rigid enough to allow a description of the coupled potential energy surfaces (PES) within the harmonic approximation. Through a hierarchical representation of the Hamiltonian, we define a set of sequentially coupled effective modes and obtain reduced-dimensionality models by truncating the sequence of modes. We systematically investigate the predictions on the electronic populations of these models and of a recently proposed mean-field mixed quantum-classical (MQC) approach, where the most important effective modes are treated at the quantum level and the motion of the remaining ones is approximated with a swarm of classical trajectories. As a test case, we consider a linear vibronic coupling (LVC) model for the ππ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi \pi ^*$$\end{document}/nπ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\pi ^*$$\end{document} IC in thymine. LVC PES are computed both in gas phase and in water to explore the different performance of the investigated methods for different relative stabilities of the coupled PES. Reference full quantum dynamical (QD) results are obtained with the MultiLayer Multiconfigurational Time Dependent Hartree method. We show that reduced-dimensionality models work very well in the ultrafast time scale (< 100 fs). At longer times, they tend to predict smaller differences between ππ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi \pi ^*$$\end{document} and nπ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\pi ^*$$\end{document} populations than those computed with full QD simulations because they cannot fully account for trapping mechanisms which are found to involve most of the molecular modes. The proposed MQC model always improves the agreement with reference full QD simulations, even when only few modes are included in the quantum partition. It correctly reproduces the quenching of oscillations in electronic populations and partially recovers the error of reduced-dimensionality models on the long-time populations.
引用
收藏
相关论文
共 124 条
[21]  
Li X(2006)undefined J Chem Phys 125 194102-undefined
[22]  
Burghardt I(2016)undefined J Chem Phys 144 114102-undefined
[23]  
Nest M(2011)undefined Chem Phys Chem 12 1957-undefined
[24]  
Worth GA(2016)undefined Chem Rev 116 3540-undefined
[25]  
Burghardt I(2018)undefined J Chem Theor Comput 14 820-undefined
[26]  
Giri K(2005)undefined Chem Rev 105 2999-undefined
[27]  
Worth GA(2004)undefined J Chem Phys 121 6155-undefined
[28]  
Lasorne B(1985)undefined J Phys B At Mol Phys 18 3073-undefined
[29]  
Robb MA(1999)undefined J Chem Phys 110 936-undefined
[30]  
Worth GA(2015)undefined Phys Chem Chem Phys 17 30937-undefined