Comparison of the results of a mean-field mixed quantum/classical method with full quantum predictions for nonadiabatic dynamics: application to the ππ∗/nπ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi \pi ^*/n\pi ^*$$\end{document} decay of thymine

被引:0
作者
Yanli Liu
Javier Cerezo
Na Lin
Xian Zhao
Roberto Improta
Fabrizio Santoro
机构
[1] Ludong University,School of Physics and Optoelectronics Engineering
[2] Universidad de Murcia,Departamento de Química Física
[3] Shandong University,State Key Laboratory of Crystal Materials
[4] CNR-Consiglio Nazionale delle Ricerche,LIDYL, CEA, CNRS
[5] Istituto di Biostrutture e Bioimmagini (IBB-CNR),undefined
[6] Université Paris-Saclay,undefined
[7] CNR-Consiglio Nazionale delle Ricerche,undefined
[8] Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR),undefined
[9] UOS di Pisa,undefined
关键词
Internal conversion; Quantum dynamics; Reduced-dimensionality models; Mixed quantum/classical methods; Linear vibronic coupling model;
D O I
10.1007/s00214-018-2218-z
中图分类号
学科分类号
摘要
We consider the nonadiabatic dynamics of internal conversions (ICs) in systems rigid enough to allow a description of the coupled potential energy surfaces (PES) within the harmonic approximation. Through a hierarchical representation of the Hamiltonian, we define a set of sequentially coupled effective modes and obtain reduced-dimensionality models by truncating the sequence of modes. We systematically investigate the predictions on the electronic populations of these models and of a recently proposed mean-field mixed quantum-classical (MQC) approach, where the most important effective modes are treated at the quantum level and the motion of the remaining ones is approximated with a swarm of classical trajectories. As a test case, we consider a linear vibronic coupling (LVC) model for the ππ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi \pi ^*$$\end{document}/nπ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\pi ^*$$\end{document} IC in thymine. LVC PES are computed both in gas phase and in water to explore the different performance of the investigated methods for different relative stabilities of the coupled PES. Reference full quantum dynamical (QD) results are obtained with the MultiLayer Multiconfigurational Time Dependent Hartree method. We show that reduced-dimensionality models work very well in the ultrafast time scale (< 100 fs). At longer times, they tend to predict smaller differences between ππ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi \pi ^*$$\end{document} and nπ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\pi ^*$$\end{document} populations than those computed with full QD simulations because they cannot fully account for trapping mechanisms which are found to involve most of the molecular modes. The proposed MQC model always improves the agreement with reference full QD simulations, even when only few modes are included in the quantum partition. It correctly reproduces the quenching of oscillations in electronic populations and partially recovers the error of reduced-dimensionality models on the long-time populations.
引用
收藏
相关论文
共 124 条
[1]  
Leforestier C(1991)undefined J Comput Phys 94 59-undefined
[2]  
Beck MH(2000)undefined Phys Rep 324 1-undefined
[3]  
Jäckle A(2003)undefined J. Chem Phys 119 1289-undefined
[4]  
Worth GA(2014)undefined Entropy 16 62-undefined
[5]  
Meyer H-D(1981)undefined J Chem Phys 75 2923-undefined
[6]  
Wang H(2016)undefined J Chem Theor Comput 12 935-undefined
[7]  
Thoss M(2016)undefined J Phys Chem A 120 7255-undefined
[8]  
De Carvahlo FF(2003)undefined J Chem Phys 119 5364-undefined
[9]  
Bouduban MEF(2008)undefined J Chem Phys 129 174104-undefined
[10]  
Curchod BFE(2007)undefined Phys Chem Chem Phys 9 3210-undefined