Amphiphilic block copolymer nanocontainers as bioreactors

被引:0
|
作者
C. Nardin
J. Widmer
M. Winterhalter
W. Meier
机构
[1] Department of Physical Chemistry,
[2] University of Basel,undefined
[3] Klingelbergstrasse 80,undefined
[4] CH-4056 Basel,undefined
[5] Switzerland,undefined
[6] Institut de Pharmacologie et de Biologie Structurale,undefined
[7] CNRS,undefined
[8] 205 route de Narbonne,undefined
[9] F-31077 Toulouse,undefined
[10] France,undefined
来源
关键词
PACS. 83.70.Hq Heterogeneous liquids: suspensions, dispersions, emulsions, pastes, slurries, foams, block copolymers, etc. – 81.05.Ys Nanophase materials – 87.68.+z Biomaterials and biological interfaces;
D O I
暂无
中图分类号
学科分类号
摘要
Self-assembly of an amphiphilic triblock copolymer carrying polymerizable end-groups is used to prepare nanometer-sized vesicular structures in aqueous solution. The triblock copolymer shells of the vesicles can be regarded as a mimetic of biological membranes although they are 2 to 3 times thicker than a conventional lipid bilayer. Nevertheless, they can serve as a matrix for membrane-spanning proteins. Surprisingly, the proteins remain functional despite the extreme thickness of the membranes and that even after polymerization of the reactive triblock copolymers. This opens a new field to create mechanically stable protein/polymer hybrid membranes. As a representative example we functionalize (polymerized) triblock copolymer vesicles by reconstituting a channel-forming protein from the outer cell wall of Gram-negative bacteria. The protein used (OmpF) acts as a size-selective filter, which allows only for passage of molecules with a molecular weight below 400 g mol-1. Therefore substrates may still have access to enzymes encapsulated in such protein/polymer hybrid nanocontainers. We demonstrate this using the enzyme β-lactamase which is able to hydrolyze the antibiotic ampicillin. In addition, a transmembrane voltage above a given threshold causes a reversible gating transition of OmpF. This can be used to reversibly activate or deactivate the resulting nanoreactors.
引用
收藏
页码:403 / 410
页数:7
相关论文
共 50 条
  • [1] Amphiphilic block copolymer nanocontainers as bioreactors
    Nardin, C
    Widmer, J
    Winterhalter, M
    Meier, W
    EUROPEAN PHYSICAL JOURNAL E, 2001, 4 (04): : 403 - 410
  • [2] Block Copolymer Nanocontainers
    Pinna, Marco
    Hiltl, Stephanie
    Guo, Xiaohu
    Boeker, Alexander
    Zvelindovsky, Andrei V.
    ACS NANO, 2010, 4 (05) : 2845 - 2855
  • [3] Structure of amphiphilic block copolymer systems.
    Castelletto, V
    Hamley, II
    Yang, Z
    Haeussler, W
    Pedersen, JS
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2004, 227 : U550 - U550
  • [4] The Morphological Study of Amphiphilic Block Copolymer Micelles
    Mei Aixiong
    Yang Yong
    Xu Junting
    Du Binyang
    PROGRESS IN CHEMISTRY, 2009, 21 (10) : 2188 - 2198
  • [5] Interaction of amphiphilic block copolymer micelles with surfactants
    Sastry, NV
    Hoffmann, H
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2004, 250 (1-3) : 247 - 261
  • [6] Amphiphilic block copolymer aggregates for nanocasting.
    Goltner, CG
    Antonietti, M
    Hentze, HP
    Kramer, E
    Berton, B
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1998, 215 : U430 - U430
  • [7] Amphiphilic block copolymer of styrene and ionic acetylene
    Balogh, L
    Samuelson, L
    Alva, KS
    Blumstein, A
    MACROMOLECULES, 1996, 29 (12) : 4180 - 4186
  • [8] Thickening carbon dioxide with amphiphilic block copolymer
    Zhang, J.
    Rao, L. Q.
    Meng, S. W.
    Lu, G. W.
    Zhang, R.
    Yu, W. S.
    Yang, Q.
    ENERGY AND SUSTAINABILITY V: SPECIAL CONTRIBUTIONS, 2015, : 175 - 182
  • [9] Amphiphilic Block Copolymer Micelles for Gene Delivery
    Li Qin
    Jin Bixin
    Luo Yunjun
    Li Xiaoyu
    CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2022, 38 (06) : 1368 - 1379
  • [10] Amphiphilic Block Copolymer Micelles for Gene Delivery
    Qin Li
    Bixin Jin
    Yunjun Luo
    Xiaoyu Li
    Chemical Research in Chinese Universities, 2022, 38 : 1368 - 1379