IΔ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_\Delta $$\end{document} and IΔ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I^*_\Delta $$\end{document}-convergence on time scales

被引:0
作者
Prasanta Malik
Argha Ghosh
Manojit Maity
机构
[1] The University of Burdwan,Department of Mathematics
关键词
-measurable function; Time scale; -weak ideal; -convergence; -convergence; Primary 26E70; Secondary 40A35;
D O I
10.1007/s41478-020-00238-w
中图分类号
学科分类号
摘要
In this paper, we introduce the concept of Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document}-weak ideal on a time scale T and using it we introduce and study the notions of IΔ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{\Delta }$$\end{document}-convergence and IΔ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I^{*}_{\Delta }$$\end{document}-convergence of a Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document}-measurable real-valued function f defined on T. The notion of IΔ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{\Delta }$$\end{document}-convergence generalizes the notion of statistical convergence of a Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document}-measurable real-valued function f defined on a time scale T.
引用
收藏
页码:1097 / 1106
页数:9
相关论文
共 50 条
[11]   Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}-Convergence for Plane to Wrinkles Transition Problem [J].
Peter Bella ;
Roberta Marziani .
Journal of Nonlinear Science, 2025, 35 (1)
[13]   \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1$$\end{document}-Convergence of Double Vilenkin Series [J].
N. Yu. Agafonova ;
S. S. Volosivets .
p-Adic Numbers, Ultrametric Analysis and Applications, 2023, 15 (2) :94-103
[17]   Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document}-Convergence for Generalized Hybrid Mappings in CAT(0) Spaces [J].
Rabian Wangkeeree ;
Pakkapon Preechasilp .
Bulletin of the Malaysian Mathematical Sciences Society, 2015, 38 (3) :1127-1141
[18]   Wijsman Lacunary I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{\mathcal{I}}}$$\end{document}-Invariant Convergence of Sequences of Sets [J].
Erdinç Dündar ;
Nimet Pancaroğlu Akın ;
Uğur Ulusu .
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2021, 91 (3) :517-522
[19]   The Nonconvergence of h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h$$\end{document}-Refinement in Prolate Elements [J].
John P. Boyd ;
Gregor Gassner ;
Burhan A. Sadiq .
Journal of Scientific Computing, 2013, 57 (2) :372-389
[20]   Ka\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{a}$$\end{document}-convergence and Korovkin type approximation [J].
Sevda Orhan ;
Kamil Demirci .
Periodica Mathematica Hungarica, 2018, 77 (1) :108-118