Biocompatibility of nitrogen-doped multiwalled carbon nanotubes with murine fibroblasts and human hematopoietic stem cells

被引:0
|
作者
Jose G. Munguia-Lopez
Rodrigo Juarez
Emilio Muñoz-Sandoval
Marco A. Kalixto-Sanchez
Joseph Matthew Kinsella
Antonio De Leon-Rodriguez
机构
[1] Instituto Potosino de Investigación Científica y Tecnológica,Department of Molecular Biology
[2] A.C. ,Department of Bioengineering
[3] McGill University,Advanced Materials Department
[4] Instituto Potosino de Investigación Científica y Tecnológica,undefined
[5] A.C. ,undefined
[6] Hospital General del ISSSTE,undefined
来源
Journal of Nanoparticle Research | 2019年 / 21卷
关键词
Nanomaterials; Nitrogen-doped carbon nanotubes; Murine cells; Stem cells; Biomedical applications;
D O I
暂无
中图分类号
学科分类号
摘要
Chemical vapor deposition (CVD) methods to create carbon nanotubes (CNTs) with specific dopant atoms have been of interest in biomedical applications due to the relative ease of synthesis of doped CNTs with controlled physical properties. However, CNTs generated from CVD are often heterogeneous in chemical functionality, size, aspect ratio, number of walls, and conducting properties resulting in potential inconsistencies during measurement of the physiological activity of cell-CNT interactions. In this work, the biocompatibility of nitrogen-doped multiwalled carbon nanotubes (CNx) with both murine fibroblasts and human hematopoietic stem cells (hHSC) was evaluated. CNx were synthesized by CVD, purified, characterized, and classified into three fractions designated as small-CNx (S-CNx), medium (M-CNx), and large (L-CNx). Mammalian cells were incubated with CNx doses between 0.07 and 70 μg/mL, and cell viability was evaluated. hHSC and murine fibroblast both demonstrated non-significant differences in proliferation rates when exposed to M-CN, whereas, either cells experienced inhibited growth following exposure to either S-CNx and L-CNx under the same conditions. In this work, it has been demonstrated that CNTs produced by CVD have differences on the biocompatibility with mammalian cells, but the M-CNx could be a great candidate for biomedical applications.
引用
收藏
相关论文
共 50 条
  • [41] Thermal and chemical durability of nitrogen-doped carbon nanotubes
    Liu, Hao
    Zhang, Yong
    Li, Ruying
    Sun, Xueliang
    Abou-Rachid, Hakima
    JOURNAL OF NANOPARTICLE RESEARCH, 2012, 14 (08)
  • [42] Boron- and nitrogen-doped carbon nanotubes and graphene
    Panchakarla, L. S.
    Govindaraj, A.
    Rao, C. N. R.
    INORGANICA CHIMICA ACTA, 2010, 363 (15) : 4163 - 4174
  • [43] Nitrogen-doped carbon nanotubes. Synthesis and uses
    Dettlaff, Anna
    Wilamowska-Zawlocka, Monika
    Klugmann-Radziemska, Ewa
    PRZEMYSL CHEMICZNY, 2017, 96 (01): : 218 - 222
  • [44] Nitrogen-Doped Carbon Nanotubes: Growth, Mechanism and Structure
    O'Byrne, Justin P.
    Li, Zhonglai
    Jones, Sarah L. T.
    Fleming, Peter G.
    Larsson, J. Andreas
    Morris, Michael A.
    Holmes, Justin D.
    CHEMPHYSCHEM, 2011, 12 (16) : 2995 - 3001
  • [45] Nitrogen-doped carbon nanotubes produced by solar energy
    Luxembourg, D.
    Flamant, G.
    Laplaze, D.
    Sauvajol, J. L.
    Enouz, S.
    Loiseau, A.
    FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES, 2007, 15 (04) : 257 - 266
  • [46] Thermal and chemical durability of nitrogen-doped carbon nanotubes
    Hao Liu
    Yong Zhang
    Ruying Li
    Xueliang Sun
    Hakima Abou-Rachid
    Journal of Nanoparticle Research, 2012, 14
  • [47] Nitrogen-doped carbon nanotubes for heat transfer applications
    Bazmi, Mohammad
    Askari, Saeed
    Ghasemy, Ebrahim
    Rashidi, Alimorad
    Ettefaghi, Ehsanollah
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2019, 138 (01) : 69 - 79
  • [48] Nitrogen-doped carbon nanotubes as a metal catalyst support
    Mabena L.F.
    Sinha Ray S.
    Mhlanga S.D.
    Coville N.J.
    Applied Nanoscience, 2011, 1 (2) : 67 - 77
  • [49] Synthesis and Electrochemical Performance of Nitrogen-Doped Carbon Nanotubes
    Li Li-Xiang
    Liu Yong-Chang
    Geng Xin
    An Bai-Gang
    ACTA PHYSICO-CHIMICA SINICA, 2011, 27 (02) : 443 - 448
  • [50] Synthesis and thermoelectric power of nitrogen-doped carbon nanotubes
    Sadanadan, B
    Savage, T
    Bhattacharya, S
    Tritt, T
    Cassell, A
    Meyyappan, M
    Dai, ZR
    Wang, ZL
    Zidan, R
    Rao, AM
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2003, 3 (1-2) : 99 - 103