Optimal Semicomputable Approximations to Reachable and Invariant Sets

被引:0
|
作者
Pieter Collins
机构
[1] Centrum voor Wiskunde en Informatica,
[2] Postbus 94079,undefined
来源
Theory of Computing Systems | 2007年 / 41卷
关键词
Multivalued Function; Computable Function; Compact Hausdorff Space; Viability Kernel; Vietoris Topology;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider the computation of reachable, viable and invariant sets for discrete-time systems. We use the framework of type-two effectivity, in which computations are performed by Turing machines with infinite input and output tapes, with the representations of computable topology. We see that the reachable set is lower-semicomputable, and the viability and invariance kernels are upper-semicomputable. We then define an upper-semicomputable over-approximation to the reachable set, and lower-semicomputable under-approximations to the viability and invariance kernels, and show that these approximations are optimal.
引用
收藏
页码:33 / 48
页数:15
相关论文
共 50 条
  • [1] Optimal semicomputable approximations to reachable and invariant sets
    Collins, Pieter
    THEORY OF COMPUTING SYSTEMS, 2007, 41 (01) : 33 - 48
  • [2] On the computability of reachable and invariant sets
    Collins, Pieter
    2005 44th IEEE Conference on Decision and Control & European Control Conference, Vols 1-8, 2005, : 4187 - 4192
  • [3] Ellipsoidal approximations of reachable sets for linear games
    Shishido, N
    Tomlin, CJ
    PROCEEDINGS OF THE 39TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2000, : 999 - 1004
  • [4] ON OPTIMAL ELLIPSOIDS APPROXIMATING REACHABLE SETS
    OVSEEVICH, AI
    CHERNOUSKO, FL
    PROBLEMS OF CONTROL AND INFORMATION THEORY-PROBLEMY UPRAVLENIYA I TEORII INFORMATSII, 1987, 16 (02): : 125 - 134
  • [5] Internal Approximations of Reachable Sets of Control Systems with State Constraints
    Gusev, M. I.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2014, 287 : S77 - S92
  • [6] Internal approximations of reachable sets of control systems with state constraints
    M. I. Gusev
    Proceedings of the Steklov Institute of Mathematics, 2014, 287 : 77 - 92
  • [7] Internal approximations of reachable sets of control systems with state constraints
    Gusev, M. I.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2013, 19 (04): : 73 - 88
  • [8] Low Complexity Parameterized Approximations of Reachable Sets for LTI systems
    Savkovic, Borislav
    2009 IEEE INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION, VOLS 1-3, 2009, : 960 - 965
  • [9] Optimal Approximations with Rough Sets
    Janicki, Ryszard
    Lenarcic, Adam
    ROUGH SETS AND KNOWLEDGE TECHNOLOGY: 8TH INTERNATIONAL CONFERENCE, 2013, 8171 : 87 - 98
  • [10] Probabilistic reachable and invariant sets for linear systems with correlated disturbance
    Fiacchini, Mirko
    Alamo, Teodoro
    AUTOMATICA, 2021, 132