Performance of machine learning algorithms for glioma segmentation of brain MRI: a systematic literature review and meta-analysis

被引:0
作者
Evi J. van Kempen
Max Post
Manoj Mannil
Richard L. Witkam
Mark ter Laan
Ajay Patel
Frederick J. A. Meijer
Dylan Henssen
机构
[1] Radboud University Medical Center,Department of Medical Imaging
[2] University Hospital Münster,Clinic of Radiology
[3] Radboud University Medical Center,Department of Anaesthesiology, Pain and Palliative Medicine
[4] Radboud University Medical Center,Department of Neurosurgery
来源
European Radiology | 2021年 / 31卷
关键词
Machine learning; Glioma; Neuroimaging; Meta-analysis;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:9638 / 9653
页数:15
相关论文
共 200 条
[1]  
Mazzara GP(2004)Brain tumor target volume determination for radiation treatment planning through automated MRI segmentation Int J Radiat Oncol Biol Phys 59 300-312
[2]  
Velthuizen RP(2010)Morphological and flow cytometric analysis of cell infiltration in glioblastoma: a comparison of autopsy brain and neuroimaging Brain Tumor Pathol 27 81-87
[3]  
Pearlman JL(2013)A survey of MRI-based medical image analysis for brain tumor studies Phys Med Biol 58 R97-R129
[4]  
Greenberg HM(2017)2016 Updates to the WHO brain tumor classification system: what the radiologist needs to know Radiographics 37 2164-2180
[5]  
Wagner H(2017)‘Low grade glioma’: an update for radiologists Br J Radiol 90 20160600-1438
[6]  
Yamahara T(2013)State of the art survey on MRI brain tumor segmentation Magn Reson Imaging 31 1426-90
[7]  
Numa Y(1999)Feature extraction for MRI segmentation J Neuroimaging 9 85-589
[8]  
Oishi T(2018)Diagnostic accuracy of MRI texture analysis for grading gliomas J Neurooncol 140 583-2024
[9]  
Bauer S(2015)The multimodal brain tumor image segmentation benchmark (BRATS) IEEE Trans Med Imaging 34 1993-1251
[10]  
Wiest R(2019)Radiomics in glioblastoma: current status and challenges facing clinical implementation Front Oncol 9 374-78