Solving the Pure Neumann Problem by a Mixed Finite Element Method

被引:0
作者
M. I. Ivanov
I. A. Kremer
Yu. M. Laevsky
机构
[1] Institute of Computational Mathematics and Mathematical Geophysics,
[2] Siberian Branch,undefined
[3] Russian Academy of Sciences,undefined
来源
Numerical Analysis and Applications | 2022年 / 15卷
关键词
Neumann problem; generalized formulation; Lagrange multipliers; mixed finite element method; saddle point linear algebraic system; matrix kernel;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:316 / 330
页数:14
相关论文
共 27 条
[1]  
Krjizhek Michal(1993)On approximation of the Neumann problem by the penalty method Applications of Mathematics 38 459-469
[2]  
Bochev Pavel(2005)On the finite element solution of the pure Neumann problem SIAM review 47 50-66
[3]  
Lehoucq Richard B.(2007)Finite element approximation of the pure Neumann problem using the iterative penalty method Applied mathematics and computation 186 1367-1373
[4]  
Dai Xiaoxia(2019)Solving the Pure Neumann Problem by a Finite Element Method Numerical Analysis and Applications 12 359-371
[5]  
Ivanov M.I.(2007)On the computation of the pure Neumann problem in 2-dimensional elasticity International journal of fracture 146 265-277
[6]  
Kremer I.A.(2009)A regularization method for stationary maxwell equations in an inhomogeneous conducting medium Numerical Analysis and Applications 2 131-139
[7]  
Urev M.V.(2010)Solution of a regularized problem for a stationary magnetic field in a nonhomogeneous conducting medium by a finite element method Numerical Analysis and Applications 3 25-38
[8]  
Steigemann Martin(2008)An Analysis of One Regularization Approach for Solution of Pure Neumann Problem Berichte Fraunhofer ITWM 137 1-27
[9]  
Fulland Markus(2019)On the streamline upwind scheme of solution to the filtration problem Sib. Electronic Math. Reports 16 757-776
[10]  
Kremer Igor' Al'bertovich(1960)Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks Journal of applied mathematics and mechanics 24 1286-1303