Continuous rational maps into spheres

被引:0
作者
Wojciech Kucharz
机构
[1] Jagiellonian University,Institute of Mathematics, Faculty of Mathematics and Computer Science
来源
Mathematische Zeitschrift | 2016年 / 283卷
关键词
Real algebraic variety; Regular map; Continuous rational map; Approximation; Homotopy; 14P05; 14P25; 57R99;
D O I
暂无
中图分类号
学科分类号
摘要
Let X be a compact nonsingular real algebraic variety. We prove that if a continuous map from X into the unit p-sphere is homotopic to a continuous rational map, then, under certain assumptions, it can be approximated in the compact-open topology by continuous rational maps. As a byproduct, we also obtain some results on approximation of smooth submanifolds by nonsingular subvarieties.
引用
收藏
页码:1201 / 1215
页数:14
相关论文
共 23 条
  • [1] Akbulut S(1992)On approximating submanifolds by algebraic sets and a solution to the Nash conjecture Invent. Math. 107 87-98
  • [2] King H(1987)Algebraic approximation of mappings into spheres Mich. Math. J. 34 119-125
  • [3] Bochnak J(1988)On real algebraic morphisms into even-dimensional spheres Ann. of Math. (2) 128 415-433
  • [4] Kucharz W(1989)K-theory of real algebraic surfaces and threefolds Math. Proc. Camb. Philos. Soc. 106 471-480
  • [5] Bochnak J(1993)Elliptic curves and real algebraic morphisms J. Algebr. Geom. 2 635-666
  • [6] Kucharz W(2003)On approximation of smooth submanifolds by nonsingular real algebraic subvarieties Ann. Scient. Éc. Norm. Sup. (4) 36 685-690
  • [7] Bochnak J(1961)La classe d’homologie fondamentale d’un espace analityque Bull. Soc. Math. Fr. 89 461-513
  • [8] Kucharz W(1964)Resolution of singularities of an algebraic variety over a field of characteristic zero Ann. Math. (2) 79 109-326
  • [9] Bochnak J(1942)Fundamentalgruppe und zweite Bettische Gruppe Comment. Math. Helv. 14 257-309
  • [10] Kucharz W(2015)Continuous rational functions on real and Math. Z. 279 85-97